Cargando…
Dimensionality Reduction and Channel Selection of Motor Imagery Electroencephalographic Data
The performance of spatial filters based on independent components analysis (ICA) was evaluated by employing principal component analysis (PCA) preprocessing for dimensional reduction. The PCA preprocessing was not found to be a suitable method that could retain motor imagery information in a smalle...
Autores principales: | Naeem, Muhammad, Brunner, Clemens, Pfurtscheller, Gert |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2009
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2695957/ https://www.ncbi.nlm.nih.gov/pubmed/19536346 http://dx.doi.org/10.1155/2009/537504 |
Ejemplares similares
-
A large electroencephalographic motor imagery dataset for electroencephalographic brain computer interfaces
por: Kaya, Murat, et al.
Publicado: (2018) -
Effective Connectivity for Decoding Electroencephalographic Motor Imagery Using a Probabilistic Neural Network
por: Awais, Muhammad Ahsan, et al.
Publicado: (2021) -
Quaternion-Based Signal Analysis for Motor Imagery Classification from Electroencephalographic Signals
por: Batres-Mendoza, Patricia, et al.
Publicado: (2016) -
Predicting motor learning performance from Electroencephalographic data
por: Meyer, Timm, et al.
Publicado: (2014) -
Brisk heart rate and EEG changes during execution and withholding of cue-paced foot motor imagery
por: Pfurtscheller, Gert, et al.
Publicado: (2013)