Cargando…
Bootstrapping of gene-expression data improves and controls the false discovery rate of differentially expressed genes
The ordinary-, penalized-, and bootstrap t-test, least squares and best linear unbiased prediction were compared for their false discovery rates (FDR), i.e. the fraction of falsely discovered genes, which was empirically estimated in a duplicate of the data set. The bootstrap-t-test yielded up to 80...
Autores principales: | Meuwissen, Theo HE, Goddard, Mike E |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2004
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2697185/ https://www.ncbi.nlm.nih.gov/pubmed/15040898 http://dx.doi.org/10.1186/1297-9686-36-2-191 |
Ejemplares similares
-
False discovery rate paradigms for statistical analyses of microarray gene expression data
por: Cheng, Cheng, et al.
Publicado: (2007) -
Estimating the local false discovery rate via a bootstrap solution to the reference class problem
por: Abbas-Aghababazadeh, Farnoosh, et al.
Publicado: (2018) -
Estimating the False Discovery Rate Using Mixed Normal Distribution for Identifying Differentially Expressed Genes in Microarray Data Analysis
por: Hirakawa, Akihiro, et al.
Publicado: (2008) -
Bootstrap-based differential gene expression analysis for RNA-Seq data with and without replicates
por: Al Seesi, Sahar, et al.
Publicado: (2014) -
stageR: a general stage-wise method for controlling the gene-level false discovery rate in differential expression and differential transcript usage
por: Van den Berge, Koen, et al.
Publicado: (2017)