Cargando…
Identification of quantitative trait loci associated with bone traits and body weight in an F2 resource population of chickens*
Bone fractures at the end of lay are a significant problem in egg-laying strains of hens. The objective of the current study was to identify quantitative trait loci (QTL) associated with bone mineralization and strength in a chicken resource population. Layer (White Leghorn hens) and broiler (Cobb-C...
Autores principales: | , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2005
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2697244/ https://www.ncbi.nlm.nih.gov/pubmed/16277974 http://dx.doi.org/10.1186/1297-9686-37-7-677 |
_version_ | 1782168313507348480 |
---|---|
author | Schreiweis, Melissa A Hester, Patricia Y Moody, Diane E |
author_facet | Schreiweis, Melissa A Hester, Patricia Y Moody, Diane E |
author_sort | Schreiweis, Melissa A |
collection | PubMed |
description | Bone fractures at the end of lay are a significant problem in egg-laying strains of hens. The objective of the current study was to identify quantitative trait loci (QTL) associated with bone mineralization and strength in a chicken resource population. Layer (White Leghorn hens) and broiler (Cobb-Cobb roosters) lines were crossed to generate an F2 population of 508Â hens over seven hatches, and 26 traits related to bone integrity, including bone mineral density (BMD) and content (BMC), were measured. Genotypes of 120 microsatellite markers on 28 autosomal groups were determined, and interval mapping was conducted to identify QTL regions. Twenty-three tests representing three chromosomal regions (chromosomes 4, 10 and 27) contained significant QTL that surpassed the 5% genome-wise threshold, and 47 tests representing 15 chromosomes identified suggestive QTL that surpassed the 5% chromosome-wise threshold. Although no significant QTL influencing BMD and BMC were detected after adjusting for variation in body weight and egg production, multiple suggestive QTL were found. These results support previous experiments demonstrating an important genetic regulation of bone strength in chickens, but suggest the regulation may be due to the effects of multiple genes that each account for relatively small amounts of variation in bone strength. |
format | Text |
id | pubmed-2697244 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2005 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-26972442009-06-16 Identification of quantitative trait loci associated with bone traits and body weight in an F2 resource population of chickens* Schreiweis, Melissa A Hester, Patricia Y Moody, Diane E Genet Sel Evol Research Bone fractures at the end of lay are a significant problem in egg-laying strains of hens. The objective of the current study was to identify quantitative trait loci (QTL) associated with bone mineralization and strength in a chicken resource population. Layer (White Leghorn hens) and broiler (Cobb-Cobb roosters) lines were crossed to generate an F2 population of 508Â hens over seven hatches, and 26 traits related to bone integrity, including bone mineral density (BMD) and content (BMC), were measured. Genotypes of 120 microsatellite markers on 28 autosomal groups were determined, and interval mapping was conducted to identify QTL regions. Twenty-three tests representing three chromosomal regions (chromosomes 4, 10 and 27) contained significant QTL that surpassed the 5% genome-wise threshold, and 47 tests representing 15 chromosomes identified suggestive QTL that surpassed the 5% chromosome-wise threshold. Although no significant QTL influencing BMD and BMC were detected after adjusting for variation in body weight and egg production, multiple suggestive QTL were found. These results support previous experiments demonstrating an important genetic regulation of bone strength in chickens, but suggest the regulation may be due to the effects of multiple genes that each account for relatively small amounts of variation in bone strength. BioMed Central 2005-11-15 /pmc/articles/PMC2697244/ /pubmed/16277974 http://dx.doi.org/10.1186/1297-9686-37-7-677 Text en Copyright © 2005 INRA, EDP Sciences |
spellingShingle | Research Schreiweis, Melissa A Hester, Patricia Y Moody, Diane E Identification of quantitative trait loci associated with bone traits and body weight in an F2 resource population of chickens* |
title | Identification of quantitative trait loci associated with bone traits and body weight in an F2 resource population of chickens* |
title_full | Identification of quantitative trait loci associated with bone traits and body weight in an F2 resource population of chickens* |
title_fullStr | Identification of quantitative trait loci associated with bone traits and body weight in an F2 resource population of chickens* |
title_full_unstemmed | Identification of quantitative trait loci associated with bone traits and body weight in an F2 resource population of chickens* |
title_short | Identification of quantitative trait loci associated with bone traits and body weight in an F2 resource population of chickens* |
title_sort | identification of quantitative trait loci associated with bone traits and body weight in an f2 resource population of chickens* |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2697244/ https://www.ncbi.nlm.nih.gov/pubmed/16277974 http://dx.doi.org/10.1186/1297-9686-37-7-677 |
work_keys_str_mv | AT schreiweismelissaa identificationofquantitativetraitlociassociatedwithbonetraitsandbodyweightinanf2resourcepopulationofchickens AT hesterpatriciay identificationofquantitativetraitlociassociatedwithbonetraitsandbodyweightinanf2resourcepopulationofchickens AT moodydianee identificationofquantitativetraitlociassociatedwithbonetraitsandbodyweightinanf2resourcepopulationofchickens |