Cargando…
Deciphering the connectivity structure of biological networks using MixNet
BACKGROUND: As biological networks often show complex topological features, mathematical methods are required to extract meaningful information. Clustering methods are useful in this setting, as they allow the summary of the network's topology into a small number of relevant classes. Different...
Autores principales: | Picard, Franck, Miele, Vincent, Daudin, Jean-Jacques, Cottret, Ludovic, Robin, Stéphane |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2009
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2697640/ https://www.ncbi.nlm.nih.gov/pubmed/19534742 http://dx.doi.org/10.1186/1471-2105-10-S6-S17 |
Ejemplares similares
-
MixNet-LD: An Automated Classification System for Multiple Lung Diseases Using Modified MixNet Model
por: Ahoor, Ayesha, et al.
Publicado: (2023) -
A statistical approach for array CGH data analysis
por: Picard, Franck, et al.
Publicado: (2005) -
BioNetBuilder2.0: bringing systems biology to chicken and other model organisms
por: Konieczka, Jay H, et al.
Publicado: (2009) -
Deciphering the genetic control of innate and adaptive immune responses in pig: a combined genetic and genomic study
por: Flori, Laurence, et al.
Publicado: (2011) -
Extracting biological information from DNA arrays: an unexpected link between arginine and methionine metabolism in Bacillus subtilis
por: Sekowska, Agnieszka, et al.
Publicado: (2001)