Cargando…

NF-κB mediated enhancement of potassium currents by the chemokine CXCL1/growth related oncogene in small diameter rat sensory neurons

BACKGROUND: Inflammatory processes play important roles in both neuropathic and inflammatory pain states, but the effects of inflammation per se within the sensory ganglia are not well understood. The cytokine growth-related oncogene (GRO/KC; CXCL1) shows strong, rapid upregulation in dorsal root ga...

Descripción completa

Detalles Bibliográficos
Autores principales: Yang, Rui-Hua, Strong, Judith A, Zhang, Jun-Ming
Formato: Texto
Lenguaje:English
Publicado: BioMed Central 2009
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2698898/
https://www.ncbi.nlm.nih.gov/pubmed/19476648
http://dx.doi.org/10.1186/1744-8069-5-26
Descripción
Sumario:BACKGROUND: Inflammatory processes play important roles in both neuropathic and inflammatory pain states, but the effects of inflammation per se within the sensory ganglia are not well understood. The cytokine growth-related oncogene (GRO/KC; CXCL1) shows strong, rapid upregulation in dorsal root ganglion (DRG) in both nerve injury and inflammatory pain models. We examined the direct effects of GRO/KC on small diameter DRG neurons, which are predominantly nociceptive. Whole cell voltage clamp technique was used to measure voltage-activated potassium (K) currents in acutely cultured adult rat small diameter sensory neurons. Fluorescently labeled isolectin B4 (IB4) was used to classify cells as IB4-positive or IB4-negative. RESULTS: In IB4-negative neurons, voltage-activated K current densities of both transient and sustained components were increased after overnight incubation with GRO/KC (1.5 nM), without marked changes in voltage dependence or kinetics. The average values for the slow and fast decay time constants at 20 mV were unchanged by GRO/KC. The amplitude of the fast inactivating component increased significantly with no large shifts in the voltage dependence of inactivation. The increase in K currents was completely blocked by co-incubation with protein synthesis inhibitor cycloheximide (CHX) or NF-κB inhibitors pyrrolidine dithiocarbamate (PDTC) or quinazoline (6-Amino-4-(4-phenoxypheny lethylamino;QNZ). In contrast, the voltage-activated K current of IB4-positive neurons was unchanged by GRO/KC. GRO/KC incubation caused no significant changes in the expression level of eight selected voltage-gated K channel genes in quantitative PCR analysis. CONCLUSION: The results suggest that GRO/KC has important effects in inflammatory processes via its direct actions on sensory neurons, and that activation of NF-κB is involved in the GRO/KC-induced enhancement of K currents.