Cargando…

Citric acid wastewater as electron donor for biological sulfate reduction

Citrate-containing wastewater is used as electron donor for sulfate reduction in a biological treatment plant for the removal of sulfate. The pathway of citrate conversion coupled to sulfate reduction and the microorganisms involved were investigated. Citrate was not a direct electron donor for the...

Descripción completa

Detalles Bibliográficos
Autores principales: Stams, Alfons J. M., Huisman, Jacco, Garcia Encina, Pedro A., Muyzer, Gerard
Formato: Texto
Lenguaje:English
Publicado: Springer Berlin Heidelberg 2009
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2699387/
https://www.ncbi.nlm.nih.gov/pubmed/19399495
http://dx.doi.org/10.1007/s00253-009-1995-7
Descripción
Sumario:Citrate-containing wastewater is used as electron donor for sulfate reduction in a biological treatment plant for the removal of sulfate. The pathway of citrate conversion coupled to sulfate reduction and the microorganisms involved were investigated. Citrate was not a direct electron donor for the sulfate-reducing bacteria. Instead, citrate was fermented to mainly acetate and formate. These fermentation products served as electron donors for the sulfate-reducing bacteria. Sulfate reduction activities of the reactor biomass with acetate and formate were sufficiently high to explain the sulfate reduction rates that are required for the process. Two citrate-fermenting bacteria were isolated. Strain R210 was closest related to Trichococcus pasteurii (99.5% ribosomal RNA (rRNA) gene sequence similarity). The closest relative of strain S101 was Veillonella montepellierensis with an rRNA gene sequence similarity of 96.7%. Both strains had a complementary substrate range.