Cargando…

Novel mGluR- and CB1R-Independent Suppression of GABA Release Caused by a Contaminant of the Group I Metabotropic Glutamate Receptor Agonist, DHPG

BACKGROUND: Metabotropic glutamate receptors (mGluRs) are ubiquitous throughout the body, especially in brain, where they mediate numerous effects. MGluRs are classified into groups of which group I, comprising mGluRs 1 and 5, is especially important in neuronal communication. Group I actions are of...

Descripción completa

Detalles Bibliográficos
Autores principales: Lafourcade, Carlos A., Zhang, Longhua, Alger, Bradley E.
Formato: Texto
Lenguaje:English
Publicado: Public Library of Science 2009
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2699468/
https://www.ncbi.nlm.nih.gov/pubmed/19568435
http://dx.doi.org/10.1371/journal.pone.0006122
_version_ 1782168493972520960
author Lafourcade, Carlos A.
Zhang, Longhua
Alger, Bradley E.
author_facet Lafourcade, Carlos A.
Zhang, Longhua
Alger, Bradley E.
author_sort Lafourcade, Carlos A.
collection PubMed
description BACKGROUND: Metabotropic glutamate receptors (mGluRs) are ubiquitous throughout the body, especially in brain, where they mediate numerous effects. MGluRs are classified into groups of which group I, comprising mGluRs 1 and 5, is especially important in neuronal communication. Group I actions are often investigated with the selective agonist, S-3,5-dihydroxyphenylglycine (DHPG). Despite the selectivity of DHPG, its use has often led to contradictory findings. We now report that a particular commercial preparation of DHPG can produce mGluR-independent effects. These findings may help reconcile some discrepant reports. METHODS: We carried out electrophysiological recordings in the rat in vitro hippocampal slice preparation, focusing mainly on pharmacologically isolated GABA(A)-receptor-mediated synaptic currents. Principal Findings: While preparations of DHPG from three companies suppressed GABAergic transmission in an mGluR-dependent way, one batch had an additional, unusual effect. Even in the presence of antagonists of mGluRs, it caused a reversible, profound suppression of inhibitory transmission. This mGluR - independent action was not due to a higher potency of the compound, or its ability to cause endocannabinoid-dependent responses. Field potential recordings revealed that glutamatergic transmission was not affected, and quantal analysis of GABA transmission confirmed the unusual effect was on GABA release, and not GABA(A) receptors. We have not identified the responsible factor in the DHPG preparation, but the samples were 99% pure as determined by HPLC and NMR analyses. CONCLUSIONS: In certain respects our observations with the anomalous batch strikingly resemble some published reports of unusual DHPG effects. The present findings could therefore contribute to explaining discrepancies in the literature. DHPG is widely employed to study mGluRs in different systems, hence rigorous controls should be performed before conclusions based on its use are drawn.
format Text
id pubmed-2699468
institution National Center for Biotechnology Information
language English
publishDate 2009
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-26994682009-07-01 Novel mGluR- and CB1R-Independent Suppression of GABA Release Caused by a Contaminant of the Group I Metabotropic Glutamate Receptor Agonist, DHPG Lafourcade, Carlos A. Zhang, Longhua Alger, Bradley E. PLoS One Research Article BACKGROUND: Metabotropic glutamate receptors (mGluRs) are ubiquitous throughout the body, especially in brain, where they mediate numerous effects. MGluRs are classified into groups of which group I, comprising mGluRs 1 and 5, is especially important in neuronal communication. Group I actions are often investigated with the selective agonist, S-3,5-dihydroxyphenylglycine (DHPG). Despite the selectivity of DHPG, its use has often led to contradictory findings. We now report that a particular commercial preparation of DHPG can produce mGluR-independent effects. These findings may help reconcile some discrepant reports. METHODS: We carried out electrophysiological recordings in the rat in vitro hippocampal slice preparation, focusing mainly on pharmacologically isolated GABA(A)-receptor-mediated synaptic currents. Principal Findings: While preparations of DHPG from three companies suppressed GABAergic transmission in an mGluR-dependent way, one batch had an additional, unusual effect. Even in the presence of antagonists of mGluRs, it caused a reversible, profound suppression of inhibitory transmission. This mGluR - independent action was not due to a higher potency of the compound, or its ability to cause endocannabinoid-dependent responses. Field potential recordings revealed that glutamatergic transmission was not affected, and quantal analysis of GABA transmission confirmed the unusual effect was on GABA release, and not GABA(A) receptors. We have not identified the responsible factor in the DHPG preparation, but the samples were 99% pure as determined by HPLC and NMR analyses. CONCLUSIONS: In certain respects our observations with the anomalous batch strikingly resemble some published reports of unusual DHPG effects. The present findings could therefore contribute to explaining discrepancies in the literature. DHPG is widely employed to study mGluRs in different systems, hence rigorous controls should be performed before conclusions based on its use are drawn. Public Library of Science 2009-07-01 /pmc/articles/PMC2699468/ /pubmed/19568435 http://dx.doi.org/10.1371/journal.pone.0006122 Text en Lafourcade et al. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited.
spellingShingle Research Article
Lafourcade, Carlos A.
Zhang, Longhua
Alger, Bradley E.
Novel mGluR- and CB1R-Independent Suppression of GABA Release Caused by a Contaminant of the Group I Metabotropic Glutamate Receptor Agonist, DHPG
title Novel mGluR- and CB1R-Independent Suppression of GABA Release Caused by a Contaminant of the Group I Metabotropic Glutamate Receptor Agonist, DHPG
title_full Novel mGluR- and CB1R-Independent Suppression of GABA Release Caused by a Contaminant of the Group I Metabotropic Glutamate Receptor Agonist, DHPG
title_fullStr Novel mGluR- and CB1R-Independent Suppression of GABA Release Caused by a Contaminant of the Group I Metabotropic Glutamate Receptor Agonist, DHPG
title_full_unstemmed Novel mGluR- and CB1R-Independent Suppression of GABA Release Caused by a Contaminant of the Group I Metabotropic Glutamate Receptor Agonist, DHPG
title_short Novel mGluR- and CB1R-Independent Suppression of GABA Release Caused by a Contaminant of the Group I Metabotropic Glutamate Receptor Agonist, DHPG
title_sort novel mglur- and cb1r-independent suppression of gaba release caused by a contaminant of the group i metabotropic glutamate receptor agonist, dhpg
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2699468/
https://www.ncbi.nlm.nih.gov/pubmed/19568435
http://dx.doi.org/10.1371/journal.pone.0006122
work_keys_str_mv AT lafourcadecarlosa novelmglurandcb1rindependentsuppressionofgabareleasecausedbyacontaminantofthegroupimetabotropicglutamatereceptoragonistdhpg
AT zhanglonghua novelmglurandcb1rindependentsuppressionofgabareleasecausedbyacontaminantofthegroupimetabotropicglutamatereceptoragonistdhpg
AT algerbradleye novelmglurandcb1rindependentsuppressionofgabareleasecausedbyacontaminantofthegroupimetabotropicglutamatereceptoragonistdhpg