Cargando…

The amino terminal domain from Mrt4 protein can functionally replace the RNA binding domain of the ribosomal P0 protein

In Saccharomyces cerevisiae, the Mrt4 protein is a component of the ribosome assembly machinery that shares notable sequence homology to the P0 ribosomal stalk protein. Here, we show that these proteins can not bind simultaneously to ribosomes and moreover, a chimera containing the first 137 amino a...

Descripción completa

Detalles Bibliográficos
Autores principales: Rodríguez-Mateos, María, Abia, David, García-Gómez, Juan J., Morreale, Antonio, de la Cruz, Jesús, Santos, Cruz, Remacha, Miguel, Ballesta, Juan P. G.
Formato: Texto
Lenguaje:English
Publicado: Oxford University Press 2009
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2699499/
https://www.ncbi.nlm.nih.gov/pubmed/19346338
http://dx.doi.org/10.1093/nar/gkp209
_version_ 1782168498671190016
author Rodríguez-Mateos, María
Abia, David
García-Gómez, Juan J.
Morreale, Antonio
de la Cruz, Jesús
Santos, Cruz
Remacha, Miguel
Ballesta, Juan P. G.
author_facet Rodríguez-Mateos, María
Abia, David
García-Gómez, Juan J.
Morreale, Antonio
de la Cruz, Jesús
Santos, Cruz
Remacha, Miguel
Ballesta, Juan P. G.
author_sort Rodríguez-Mateos, María
collection PubMed
description In Saccharomyces cerevisiae, the Mrt4 protein is a component of the ribosome assembly machinery that shares notable sequence homology to the P0 ribosomal stalk protein. Here, we show that these proteins can not bind simultaneously to ribosomes and moreover, a chimera containing the first 137 amino acids of Mrt4 and the last 190 amino acids from P0 can partially complement the absence of the ribosomal protein in a conditional P0 null mutant. This chimera is associated with ribosomes isolated from this strain when grown under restrictive conditions, although its binding is weaker than that of P0. These ribosomes contain less P1 and P2 proteins, the other ribosomal stalk components. Similarly, the interaction of the L12 protein, a stalk base component, is affected by the presence of the chimera. These results indicate that Mrt4 and P0 bind to the same site in the 25S rRNA. Indeed, molecular dynamics simulations using modelled Mrt4 and P0 complexes provide further evidence that both proteins bind similarly to rRNA, although their interaction with L12 displays notable differences. Together, these data support the participation of the Mrt4 protein in the assembly of the P0 protein into the ribosome and probably, that also of the L12 protein.
format Text
id pubmed-2699499
institution National Center for Biotechnology Information
language English
publishDate 2009
publisher Oxford University Press
record_format MEDLINE/PubMed
spelling pubmed-26994992009-06-22 The amino terminal domain from Mrt4 protein can functionally replace the RNA binding domain of the ribosomal P0 protein Rodríguez-Mateos, María Abia, David García-Gómez, Juan J. Morreale, Antonio de la Cruz, Jesús Santos, Cruz Remacha, Miguel Ballesta, Juan P. G. Nucleic Acids Res Molecular Biology In Saccharomyces cerevisiae, the Mrt4 protein is a component of the ribosome assembly machinery that shares notable sequence homology to the P0 ribosomal stalk protein. Here, we show that these proteins can not bind simultaneously to ribosomes and moreover, a chimera containing the first 137 amino acids of Mrt4 and the last 190 amino acids from P0 can partially complement the absence of the ribosomal protein in a conditional P0 null mutant. This chimera is associated with ribosomes isolated from this strain when grown under restrictive conditions, although its binding is weaker than that of P0. These ribosomes contain less P1 and P2 proteins, the other ribosomal stalk components. Similarly, the interaction of the L12 protein, a stalk base component, is affected by the presence of the chimera. These results indicate that Mrt4 and P0 bind to the same site in the 25S rRNA. Indeed, molecular dynamics simulations using modelled Mrt4 and P0 complexes provide further evidence that both proteins bind similarly to rRNA, although their interaction with L12 displays notable differences. Together, these data support the participation of the Mrt4 protein in the assembly of the P0 protein into the ribosome and probably, that also of the L12 protein. Oxford University Press 2009-06 2009-04-03 /pmc/articles/PMC2699499/ /pubmed/19346338 http://dx.doi.org/10.1093/nar/gkp209 Text en © 2009 The Author(s) http://creativecommons.org/licenses/by-nc/2.0/uk/ This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/2.0/uk/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Molecular Biology
Rodríguez-Mateos, María
Abia, David
García-Gómez, Juan J.
Morreale, Antonio
de la Cruz, Jesús
Santos, Cruz
Remacha, Miguel
Ballesta, Juan P. G.
The amino terminal domain from Mrt4 protein can functionally replace the RNA binding domain of the ribosomal P0 protein
title The amino terminal domain from Mrt4 protein can functionally replace the RNA binding domain of the ribosomal P0 protein
title_full The amino terminal domain from Mrt4 protein can functionally replace the RNA binding domain of the ribosomal P0 protein
title_fullStr The amino terminal domain from Mrt4 protein can functionally replace the RNA binding domain of the ribosomal P0 protein
title_full_unstemmed The amino terminal domain from Mrt4 protein can functionally replace the RNA binding domain of the ribosomal P0 protein
title_short The amino terminal domain from Mrt4 protein can functionally replace the RNA binding domain of the ribosomal P0 protein
title_sort amino terminal domain from mrt4 protein can functionally replace the rna binding domain of the ribosomal p0 protein
topic Molecular Biology
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2699499/
https://www.ncbi.nlm.nih.gov/pubmed/19346338
http://dx.doi.org/10.1093/nar/gkp209
work_keys_str_mv AT rodriguezmateosmaria theaminoterminaldomainfrommrt4proteincanfunctionallyreplacethernabindingdomainoftheribosomalp0protein
AT abiadavid theaminoterminaldomainfrommrt4proteincanfunctionallyreplacethernabindingdomainoftheribosomalp0protein
AT garciagomezjuanj theaminoterminaldomainfrommrt4proteincanfunctionallyreplacethernabindingdomainoftheribosomalp0protein
AT morrealeantonio theaminoterminaldomainfrommrt4proteincanfunctionallyreplacethernabindingdomainoftheribosomalp0protein
AT delacruzjesus theaminoterminaldomainfrommrt4proteincanfunctionallyreplacethernabindingdomainoftheribosomalp0protein
AT santoscruz theaminoterminaldomainfrommrt4proteincanfunctionallyreplacethernabindingdomainoftheribosomalp0protein
AT remachamiguel theaminoterminaldomainfrommrt4proteincanfunctionallyreplacethernabindingdomainoftheribosomalp0protein
AT ballestajuanpg theaminoterminaldomainfrommrt4proteincanfunctionallyreplacethernabindingdomainoftheribosomalp0protein
AT rodriguezmateosmaria aminoterminaldomainfrommrt4proteincanfunctionallyreplacethernabindingdomainoftheribosomalp0protein
AT abiadavid aminoterminaldomainfrommrt4proteincanfunctionallyreplacethernabindingdomainoftheribosomalp0protein
AT garciagomezjuanj aminoterminaldomainfrommrt4proteincanfunctionallyreplacethernabindingdomainoftheribosomalp0protein
AT morrealeantonio aminoterminaldomainfrommrt4proteincanfunctionallyreplacethernabindingdomainoftheribosomalp0protein
AT delacruzjesus aminoterminaldomainfrommrt4proteincanfunctionallyreplacethernabindingdomainoftheribosomalp0protein
AT santoscruz aminoterminaldomainfrommrt4proteincanfunctionallyreplacethernabindingdomainoftheribosomalp0protein
AT remachamiguel aminoterminaldomainfrommrt4proteincanfunctionallyreplacethernabindingdomainoftheribosomalp0protein
AT ballestajuanpg aminoterminaldomainfrommrt4proteincanfunctionallyreplacethernabindingdomainoftheribosomalp0protein