Cargando…
Combining Dissimilarities in a Hyper Reproducing Kernel Hilbert Space for Complex Human Cancer Prediction
DNA microarrays provide rich profiles that are used in cancer prediction considering the gene expression levels across a collection of related samples. Support Vector Machines (SVM) have been applied to the classification of cancer samples with encouraging results. However, they rely on Euclidean di...
Autores principales: | Martín-Merino, Manuel, Blanco, Ángela, De Las Rivas, Javier |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2009
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2699662/ https://www.ncbi.nlm.nih.gov/pubmed/19584909 http://dx.doi.org/10.1155/2009/906865 |
Ejemplares similares
-
Reproducing kernel hilbert spaces in probability and statistics
por: Berlinet, Alain, et al.
Publicado: (2004) -
A primer on reproducing kernel Hilbert spaces
por: Manton, Jonathan H, et al.
Publicado: (2015) -
Combining dissimilarity based classifiers for cancer prediction using gene expression profiles
por: Blanco, Ángela, et al.
Publicado: (2007) -
High-Order Sequential Simulation via Statistical Learning in Reproducing Kernel Hilbert Space
por: Yao, Lingqing, et al.
Publicado: (2019) -
Combining Genomic and Genealogical Information in a Reproducing Kernel Hilbert Spaces Regression Model for Genome-Enabled Predictions in Dairy Cattle
por: Rodríguez-Ramilo, Silvia Teresa, et al.
Publicado: (2014)