Cargando…
Artificial neural network, genetic algorithm, and logistic regression applications for predicting renal colic in emergency settings
BACKGROUND: Logistic regression is the most common statistical model for processing multivariate data in the medical literature. Artificial intelligence models like an artificial neural network (ANN) and genetic algorithm (GA) may also be useful to interpret medical data. AIMS: The purpose of this s...
Autores principales: | Eken, Cenker, Bilge, Ugur, Kartal, Mutlu, Eray, Oktay |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Springer-Verlag
2009
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2700221/ https://www.ncbi.nlm.nih.gov/pubmed/20157451 http://dx.doi.org/10.1007/s12245-009-0103-1 |
Ejemplares similares
-
Multivariable Logistic Regression And Back Propagation Artificial Neural Network To Predict Diabetic Retinopathy
por: Yao, Litong, et al.
Publicado: (2019) -
Shallow Landslide Susceptibility Mapping: A Comparison between Logistic Model Tree, Logistic Regression, Naïve Bayes Tree, Artificial Neural Network, and Support Vector Machine Algorithms
por: Nhu, Viet-Ha, et al.
Publicado: (2020) -
Predicting technique survival in peritoneal dialysis patients: comparing artificial neural networks and logistic regression
por: Tangri, Navdeep, et al.
Publicado: (2008) -
A Comparison of Logistic Regression Model and Artificial Neural Networks in Predicting of Student’s Academic Failure
por: Teshnizi, Saeed Hosseini, et al.
Publicado: (2015) -
Artificial neural networks versus bivariate logistic regression in prediction diagnosis of patients with hypertension and diabetes
por: Adavi, Mehdi, et al.
Publicado: (2016)