Cargando…
Models of Emergency Departments for Reducing Patient Waiting Times
In this paper, we apply both agent-based models and queuing models to investigate patient access and patient flow through emergency departments. The objective of this work is to gain insights into the comparative contributions and limitations of these complementary techniques, in their ability to co...
Autores principales: | , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2009
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2700281/ https://www.ncbi.nlm.nih.gov/pubmed/19572015 http://dx.doi.org/10.1371/journal.pone.0006127 |
_version_ | 1782168595945488384 |
---|---|
author | Laskowski, Marek McLeod, Robert D. Friesen, Marcia R. Podaima, Blake W. Alfa, Attahiru S. |
author_facet | Laskowski, Marek McLeod, Robert D. Friesen, Marcia R. Podaima, Blake W. Alfa, Attahiru S. |
author_sort | Laskowski, Marek |
collection | PubMed |
description | In this paper, we apply both agent-based models and queuing models to investigate patient access and patient flow through emergency departments. The objective of this work is to gain insights into the comparative contributions and limitations of these complementary techniques, in their ability to contribute empirical input into healthcare policy and practice guidelines. The models were developed independently, with a view to compare their suitability to emergency department simulation. The current models implement relatively simple general scenarios, and rely on a combination of simulated and real data to simulate patient flow in a single emergency department or in multiple interacting emergency departments. In addition, several concepts from telecommunications engineering are translated into this modeling context. The framework of multiple-priority queue systems and the genetic programming paradigm of evolutionary machine learning are applied as a means of forecasting patient wait times and as a means of evolving healthcare policy, respectively. The models' utility lies in their ability to provide qualitative insights into the relative sensitivities and impacts of model input parameters, to illuminate scenarios worthy of more complex investigation, and to iteratively validate the models as they continue to be refined and extended. The paper discusses future efforts to refine, extend, and validate the models with more data and real data relative to physical (spatial–topographical) and social inputs (staffing, patient care models, etc.). Real data obtained through proximity location and tracking system technologies is one example discussed. |
format | Text |
id | pubmed-2700281 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2009 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-27002812009-07-02 Models of Emergency Departments for Reducing Patient Waiting Times Laskowski, Marek McLeod, Robert D. Friesen, Marcia R. Podaima, Blake W. Alfa, Attahiru S. PLoS One Research Article In this paper, we apply both agent-based models and queuing models to investigate patient access and patient flow through emergency departments. The objective of this work is to gain insights into the comparative contributions and limitations of these complementary techniques, in their ability to contribute empirical input into healthcare policy and practice guidelines. The models were developed independently, with a view to compare their suitability to emergency department simulation. The current models implement relatively simple general scenarios, and rely on a combination of simulated and real data to simulate patient flow in a single emergency department or in multiple interacting emergency departments. In addition, several concepts from telecommunications engineering are translated into this modeling context. The framework of multiple-priority queue systems and the genetic programming paradigm of evolutionary machine learning are applied as a means of forecasting patient wait times and as a means of evolving healthcare policy, respectively. The models' utility lies in their ability to provide qualitative insights into the relative sensitivities and impacts of model input parameters, to illuminate scenarios worthy of more complex investigation, and to iteratively validate the models as they continue to be refined and extended. The paper discusses future efforts to refine, extend, and validate the models with more data and real data relative to physical (spatial–topographical) and social inputs (staffing, patient care models, etc.). Real data obtained through proximity location and tracking system technologies is one example discussed. Public Library of Science 2009-07-02 /pmc/articles/PMC2700281/ /pubmed/19572015 http://dx.doi.org/10.1371/journal.pone.0006127 Text en Laskowski et al. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Laskowski, Marek McLeod, Robert D. Friesen, Marcia R. Podaima, Blake W. Alfa, Attahiru S. Models of Emergency Departments for Reducing Patient Waiting Times |
title | Models of Emergency Departments for Reducing Patient Waiting Times |
title_full | Models of Emergency Departments for Reducing Patient Waiting Times |
title_fullStr | Models of Emergency Departments for Reducing Patient Waiting Times |
title_full_unstemmed | Models of Emergency Departments for Reducing Patient Waiting Times |
title_short | Models of Emergency Departments for Reducing Patient Waiting Times |
title_sort | models of emergency departments for reducing patient waiting times |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2700281/ https://www.ncbi.nlm.nih.gov/pubmed/19572015 http://dx.doi.org/10.1371/journal.pone.0006127 |
work_keys_str_mv | AT laskowskimarek modelsofemergencydepartmentsforreducingpatientwaitingtimes AT mcleodrobertd modelsofemergencydepartmentsforreducingpatientwaitingtimes AT friesenmarciar modelsofemergencydepartmentsforreducingpatientwaitingtimes AT podaimablakew modelsofemergencydepartmentsforreducingpatientwaitingtimes AT alfaattahirus modelsofemergencydepartmentsforreducingpatientwaitingtimes |