Cargando…

The Na(+)/H(+) exchanger NHE1 is required for directional migration stimulated via PDGFR-α in the primary cilium

We previously demonstrated that the primary cilium coordinates platelet-derived growth factor (PDGF) receptor (PDGFR) α–mediated migration in growth-arrested fibroblasts. In this study, we investigate the functional relationship between ciliary PDGFR-α and the Na(+)/H(+) exchanger NHE1 in directiona...

Descripción completa

Detalles Bibliográficos
Autores principales: Schneider, Linda, Stock, Christian-Martin, Dieterich, Peter, Jensen, Bo Hammer, Pedersen, Lotte Bang, Satir, Peter, Schwab, Albrecht, Christensen, Søren Tvorup, Pedersen, Stine Falsig
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 2009
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2700519/
https://www.ncbi.nlm.nih.gov/pubmed/19349585
http://dx.doi.org/10.1083/jcb.200806019
Descripción
Sumario:We previously demonstrated that the primary cilium coordinates platelet-derived growth factor (PDGF) receptor (PDGFR) α–mediated migration in growth-arrested fibroblasts. In this study, we investigate the functional relationship between ciliary PDGFR-α and the Na(+)/H(+) exchanger NHE1 in directional cell migration. NHE1 messenger RNA and protein levels are up-regulated in NIH3T3 cells and mouse embryonic fibroblasts (MEFs) during growth arrest, which is concomitant with cilium formation. NHE1 up-regulation is unaffected in Tg737(orpk) MEFs, which have no or very short primary cilia. In growth-arrested NIH3T3 cells, NHE1 is activated by the specific PDGFR-α ligand PDGF-AA. In wound-healing assays on growth-arrested NIH3T3 cells and wild-type MEFs, NHE1 inhibition by 5′-(N-ethyl-N-isopropyl) amiloride potently reduces PDGF-AA–mediated directional migration. These effects are strongly attenuated in interphase NIH3T3 cells, which are devoid of primary cilia, and in Tg737(orpk) MEFs. PDGF-AA failed to stimulate migration in NHE1-null fibroblasts. In conclusion, stimulation of directional migration in response to ciliary PDGFR-α signals is specifically dependent on NHE1 activity, indicating that NHE1 activation is a critical event in the physiological response to PDGFR-α stimulation.