Cargando…

A tool-kit for high-throughput, quantitative analyses of genetic interactions in E. coli

Large-scale genetic interaction studies provide the basis for defining gene function and pathway architecture. Recent advances in the ability to generate double mutants en masse in S. cerevisiae have dramatically accelerated the acquisition of genetic interaction information and the biological infer...

Descripción completa

Detalles Bibliográficos
Autores principales: Typas, Athanasios, Nichols, Robert J., Siegele, Deborah A., Shales, Michael, Collins, Sean, Lim, Bentley, Braberg, Hannes, Yamamoto, Natsuko, Takeuchi, Rikiya, Wanner, Barry L., Mori, Hirotada, Weissman, Jonathan S., Krogan, Nevan J., Gross, Carol A.
Formato: Texto
Lenguaje:English
Publicado: 2008
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2700713/
https://www.ncbi.nlm.nih.gov/pubmed/19160513
Descripción
Sumario:Large-scale genetic interaction studies provide the basis for defining gene function and pathway architecture. Recent advances in the ability to generate double mutants en masse in S. cerevisiae have dramatically accelerated the acquisition of genetic interaction information and the biological inferences that follow. Here, we describe a method based on F-driven conjugation, which allows for high-throughput generation of double mutants in E. coli. This method, termed Genetic Interaction ANalysis Technology for E. coli (GIANT-coli), permits us to systematically generate and array double mutant cells on solid media, in high-density arrays. We show that colony size provides a robust and quantitative output of cellular fitness and that GIANT-coli can recapitulate known synthetic interactions and identify new negative (synthetic sickness/lethality) and positive (suppressive/epistatic) relationships. Finally, we describe a complementary strategy for suppressor mutant identification on a genome-wide level. Together, these methods permit rapid, large-scale genetic interaction studies in E. coli.