Cargando…
Inference of gene pathways using mixture Bayesian networks
BACKGROUND: Inference of gene networks typically relies on measurements across a wide range of conditions or treatments. Although one network structure is predicted, the relationship between genes could vary across conditions. A comprehensive approach to infer general and condition-dependent gene ne...
Autores principales: | Ko, Younhee, Zhai, ChengXiang, Rodriguez-Zas, Sandra |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2009
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2701418/ https://www.ncbi.nlm.nih.gov/pubmed/19454027 http://dx.doi.org/10.1186/1752-0509-3-54 |
Ejemplares similares
-
Laplacian‐P‐splines for Bayesian inference in the mixture cure model
por: Gressani, Oswaldo, et al.
Publicado: (2022) -
A hierarchical Bayesian mixture model for inferring the expression state of genes in transcriptomes
por: Thompson, Ammon, et al.
Publicado: (2020) -
On inferring presence of an individual in a mixture: a Bayesian approach
por: Clayton, David
Publicado: (2010) -
Network Plasticity as Bayesian Inference
por: Kappel, David, et al.
Publicado: (2015) -
Bayesian inference of multi-point macromolecular architecture mixtures at nanometre resolution
por: Embacher, Peter A., et al.
Publicado: (2022)