Cargando…
In vivo properties of the proangiogenic peptide QK
The main regulator of neovascularization is Vascular Endothelial Growth Factor (VEGF). We recently demonstrated that QK, a de novo engineered VEGF mimicking peptide, shares in vitro the same biological properties of VEGF, inducing capillary formation and organization. On these grounds, the aim of th...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2009
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2702279/ https://www.ncbi.nlm.nih.gov/pubmed/19505323 http://dx.doi.org/10.1186/1479-5876-7-41 |
Sumario: | The main regulator of neovascularization is Vascular Endothelial Growth Factor (VEGF). We recently demonstrated that QK, a de novo engineered VEGF mimicking peptide, shares in vitro the same biological properties of VEGF, inducing capillary formation and organization. On these grounds, the aim of this study is to evaluate in vivo the effects of this small peptide. Therefore, on Wistar Kyoto rats, we evaluated vasomotor responses to VEGF and QK in common carotid rings. Also, we assessed the effects of QK in three different models of angiogenesis: ischemic hindlimb, wound healing and Matrigel plugs. QK and VEGF present similar endothelium-dependent vasodilatation. Moreover, the ability of QK to induce neovascularization was confirmed us by digital angiographies, dyed beads dilution and histological analysis in the ischemic hindlimb as well as by histology in wounds and Matrigel plugs. Our findings show the proangiogenic properties of QK, suggesting that also in vivo this peptide resembles the full VEGF protein. These data open to new fields of investigation on the mechanisms of activation of VEGF receptors, offering clinical implications for treatment of pathophysiological conditions such as chronic ischemia. |
---|