Cargando…

In vivo reorganization of the actin cytoskeleton in leaves of Nicotiana tabacum L. transformed with plastin-GFP. Correlation with light-activated chloroplast responses

BACKGROUND: The actin cytoskeleton is involved in the responses of plants to environmental signals. Actin bundles play the role of tracks in chloroplast movements activated by light. Chloroplasts redistribute in response to blue light in the mesophyll cells of Nicotiana tabacum. The aim of this work...

Descripción completa

Detalles Bibliográficos
Autores principales: Anielska-Mazur, Anna, Bernaś, Tytus, Gabryś, Halina
Formato: Texto
Lenguaje:English
Publicado: BioMed Central 2009
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2702303/
https://www.ncbi.nlm.nih.gov/pubmed/19480655
http://dx.doi.org/10.1186/1471-2229-9-64
_version_ 1782168754980913152
author Anielska-Mazur, Anna
Bernaś, Tytus
Gabryś, Halina
author_facet Anielska-Mazur, Anna
Bernaś, Tytus
Gabryś, Halina
author_sort Anielska-Mazur, Anna
collection PubMed
description BACKGROUND: The actin cytoskeleton is involved in the responses of plants to environmental signals. Actin bundles play the role of tracks in chloroplast movements activated by light. Chloroplasts redistribute in response to blue light in the mesophyll cells of Nicotiana tabacum. The aim of this work was to study the relationship between chloroplast responses and the organization of actin cytoskeleton in living tobacco cells. Chloroplast movements were measured photometrically as changes in light transmission through the leaves. The actin cytoskeleton, labeled with plastin-GFP, was visualised by confocal microscopy. RESULTS: The actin cytoskeleton was affected by strong blue and red light. No blue light specific actin reorganization was detected. EGTA and trifluoperazine strongly inhibited chloroplast responses and disrupted the integrity of the cytoskeleton. This disruption was reversible by Ca(2+ )or Mg(2+). Additionally, the effect of trifluoperazine was reversible by light. Wortmannin, an inhibitor of phosphoinositide kinases, potently inhibited chloroplast responses but did not influence the actin cytoskeleton at the same concentration. Also this inhibition was reversed by Ca(2+ )and Mg(2+). Magnesium ions were equally or more effective than Ca(2+ )in restoring chloroplast motility after treatment with EGTA, trifluoperazine or wortmannin. CONCLUSION: The architecture of the actin cytoskeleton in the mesophyll of tobacco is significantly modulated by strong light. This modulation does not affect the direction of chloroplast redistribution in the cell. Calcium ions have multiple functions in the mechanism of the movements. Our results suggest also that Mg(2+ )is a regulatory molecule cooperating with Ca(2+ )in the signaling pathway of blue light-induced tobacco chloroplast movements.
format Text
id pubmed-2702303
institution National Center for Biotechnology Information
language English
publishDate 2009
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-27023032009-06-27 In vivo reorganization of the actin cytoskeleton in leaves of Nicotiana tabacum L. transformed with plastin-GFP. Correlation with light-activated chloroplast responses Anielska-Mazur, Anna Bernaś, Tytus Gabryś, Halina BMC Plant Biol Research Article BACKGROUND: The actin cytoskeleton is involved in the responses of plants to environmental signals. Actin bundles play the role of tracks in chloroplast movements activated by light. Chloroplasts redistribute in response to blue light in the mesophyll cells of Nicotiana tabacum. The aim of this work was to study the relationship between chloroplast responses and the organization of actin cytoskeleton in living tobacco cells. Chloroplast movements were measured photometrically as changes in light transmission through the leaves. The actin cytoskeleton, labeled with plastin-GFP, was visualised by confocal microscopy. RESULTS: The actin cytoskeleton was affected by strong blue and red light. No blue light specific actin reorganization was detected. EGTA and trifluoperazine strongly inhibited chloroplast responses and disrupted the integrity of the cytoskeleton. This disruption was reversible by Ca(2+ )or Mg(2+). Additionally, the effect of trifluoperazine was reversible by light. Wortmannin, an inhibitor of phosphoinositide kinases, potently inhibited chloroplast responses but did not influence the actin cytoskeleton at the same concentration. Also this inhibition was reversed by Ca(2+ )and Mg(2+). Magnesium ions were equally or more effective than Ca(2+ )in restoring chloroplast motility after treatment with EGTA, trifluoperazine or wortmannin. CONCLUSION: The architecture of the actin cytoskeleton in the mesophyll of tobacco is significantly modulated by strong light. This modulation does not affect the direction of chloroplast redistribution in the cell. Calcium ions have multiple functions in the mechanism of the movements. Our results suggest also that Mg(2+ )is a regulatory molecule cooperating with Ca(2+ )in the signaling pathway of blue light-induced tobacco chloroplast movements. BioMed Central 2009-05-29 /pmc/articles/PMC2702303/ /pubmed/19480655 http://dx.doi.org/10.1186/1471-2229-9-64 Text en Copyright © 2009 Anielska-Mazur et al; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( (http://creativecommons.org/licenses/by/2.0) ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Article
Anielska-Mazur, Anna
Bernaś, Tytus
Gabryś, Halina
In vivo reorganization of the actin cytoskeleton in leaves of Nicotiana tabacum L. transformed with plastin-GFP. Correlation with light-activated chloroplast responses
title In vivo reorganization of the actin cytoskeleton in leaves of Nicotiana tabacum L. transformed with plastin-GFP. Correlation with light-activated chloroplast responses
title_full In vivo reorganization of the actin cytoskeleton in leaves of Nicotiana tabacum L. transformed with plastin-GFP. Correlation with light-activated chloroplast responses
title_fullStr In vivo reorganization of the actin cytoskeleton in leaves of Nicotiana tabacum L. transformed with plastin-GFP. Correlation with light-activated chloroplast responses
title_full_unstemmed In vivo reorganization of the actin cytoskeleton in leaves of Nicotiana tabacum L. transformed with plastin-GFP. Correlation with light-activated chloroplast responses
title_short In vivo reorganization of the actin cytoskeleton in leaves of Nicotiana tabacum L. transformed with plastin-GFP. Correlation with light-activated chloroplast responses
title_sort in vivo reorganization of the actin cytoskeleton in leaves of nicotiana tabacum l. transformed with plastin-gfp. correlation with light-activated chloroplast responses
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2702303/
https://www.ncbi.nlm.nih.gov/pubmed/19480655
http://dx.doi.org/10.1186/1471-2229-9-64
work_keys_str_mv AT anielskamazuranna invivoreorganizationoftheactincytoskeletoninleavesofnicotianatabacumltransformedwithplastingfpcorrelationwithlightactivatedchloroplastresponses
AT bernastytus invivoreorganizationoftheactincytoskeletoninleavesofnicotianatabacumltransformedwithplastingfpcorrelationwithlightactivatedchloroplastresponses
AT gabryshalina invivoreorganizationoftheactincytoskeletoninleavesofnicotianatabacumltransformedwithplastingfpcorrelationwithlightactivatedchloroplastresponses