Cargando…
Fragments of the key flowering gene GIGANTEA are associated with helitron-type sequences in the Pooideae grass Lolium perenne
BACKGROUND: Helitrons are a class of transposable elements which have been identified in a number of species of plants, animals and fungi. They are unique in their proposed rolling-circle mode of replication, have a highly variable copy-number and have been implicated in the restructuring of coding...
Autores principales: | , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2009
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2702305/ https://www.ncbi.nlm.nih.gov/pubmed/19500419 http://dx.doi.org/10.1186/1471-2229-9-70 |
_version_ | 1782168755445432320 |
---|---|
author | Langdon, Tim Thomas, Ann Huang, Lin Farrar, Kerrie King, Julie Armstead, Ian |
author_facet | Langdon, Tim Thomas, Ann Huang, Lin Farrar, Kerrie King, Julie Armstead, Ian |
author_sort | Langdon, Tim |
collection | PubMed |
description | BACKGROUND: Helitrons are a class of transposable elements which have been identified in a number of species of plants, animals and fungi. They are unique in their proposed rolling-circle mode of replication, have a highly variable copy-number and have been implicated in the restructuring of coding sequences both by their insertion into existing genes and by their incorporation of transcriptionally competent gene fragments. Helitron discovery depends on identifying associated DNA signature sequences and comprehensive evaluation of helitron contribution to a particular genome requires detailed computational analysis of whole genome sequence. Therefore, the role which helitrons have played in modelling non-model plant genomes is largely unknown. RESULTS: Cloning of the flowering gene GIGANTEA (GI) from a BAC library of the Pooideae grass Lolium perenne (perennial ryegrass) identified the target gene and several GI pseudogene fragments spanning the first five exons. Analysis of genomic sequence 5' and 3' of one these GI fragments revealed motifs consistent with helitron-type transposon insertion, specifically a putative 5'-A↓T-3' insertion site containing 5'-TC and CTAG-3' borders with a sub-terminal 16 bp hairpin. Screening of a BAC library of the closely related grass species Festuca pratensis (meadow fescue) indicated similar helitron-associated GI fragments present in this genome, as well as non-helitron associated GI fragments derived from the same region of GI. In order to investigate the possible extent of ancestral helitron-activity in L. perenne, a methylation-filtered GeneThresher(® )genomic library developed from this species was screened for potential helitron 3' hairpin sequences associated with a 3'-CTRR motif. This identified 7 potential helitron hairpin-types present between at least 9 and 51 times within the L. perenne methylation-filtered library. CONCLUSION: This represents evidence for a possible ancestral role for helitrons in modelling the genomes of Lolium and related species. |
format | Text |
id | pubmed-2702305 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2009 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-27023052009-06-27 Fragments of the key flowering gene GIGANTEA are associated with helitron-type sequences in the Pooideae grass Lolium perenne Langdon, Tim Thomas, Ann Huang, Lin Farrar, Kerrie King, Julie Armstead, Ian BMC Plant Biol Research Article BACKGROUND: Helitrons are a class of transposable elements which have been identified in a number of species of plants, animals and fungi. They are unique in their proposed rolling-circle mode of replication, have a highly variable copy-number and have been implicated in the restructuring of coding sequences both by their insertion into existing genes and by their incorporation of transcriptionally competent gene fragments. Helitron discovery depends on identifying associated DNA signature sequences and comprehensive evaluation of helitron contribution to a particular genome requires detailed computational analysis of whole genome sequence. Therefore, the role which helitrons have played in modelling non-model plant genomes is largely unknown. RESULTS: Cloning of the flowering gene GIGANTEA (GI) from a BAC library of the Pooideae grass Lolium perenne (perennial ryegrass) identified the target gene and several GI pseudogene fragments spanning the first five exons. Analysis of genomic sequence 5' and 3' of one these GI fragments revealed motifs consistent with helitron-type transposon insertion, specifically a putative 5'-A↓T-3' insertion site containing 5'-TC and CTAG-3' borders with a sub-terminal 16 bp hairpin. Screening of a BAC library of the closely related grass species Festuca pratensis (meadow fescue) indicated similar helitron-associated GI fragments present in this genome, as well as non-helitron associated GI fragments derived from the same region of GI. In order to investigate the possible extent of ancestral helitron-activity in L. perenne, a methylation-filtered GeneThresher(® )genomic library developed from this species was screened for potential helitron 3' hairpin sequences associated with a 3'-CTRR motif. This identified 7 potential helitron hairpin-types present between at least 9 and 51 times within the L. perenne methylation-filtered library. CONCLUSION: This represents evidence for a possible ancestral role for helitrons in modelling the genomes of Lolium and related species. BioMed Central 2009-06-07 /pmc/articles/PMC2702305/ /pubmed/19500419 http://dx.doi.org/10.1186/1471-2229-9-70 Text en Copyright © 2009 Langdon et al; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( (http://creativecommons.org/licenses/by/2.0) ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Langdon, Tim Thomas, Ann Huang, Lin Farrar, Kerrie King, Julie Armstead, Ian Fragments of the key flowering gene GIGANTEA are associated with helitron-type sequences in the Pooideae grass Lolium perenne |
title | Fragments of the key flowering gene GIGANTEA are associated with helitron-type sequences in the Pooideae grass Lolium perenne |
title_full | Fragments of the key flowering gene GIGANTEA are associated with helitron-type sequences in the Pooideae grass Lolium perenne |
title_fullStr | Fragments of the key flowering gene GIGANTEA are associated with helitron-type sequences in the Pooideae grass Lolium perenne |
title_full_unstemmed | Fragments of the key flowering gene GIGANTEA are associated with helitron-type sequences in the Pooideae grass Lolium perenne |
title_short | Fragments of the key flowering gene GIGANTEA are associated with helitron-type sequences in the Pooideae grass Lolium perenne |
title_sort | fragments of the key flowering gene gigantea are associated with helitron-type sequences in the pooideae grass lolium perenne |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2702305/ https://www.ncbi.nlm.nih.gov/pubmed/19500419 http://dx.doi.org/10.1186/1471-2229-9-70 |
work_keys_str_mv | AT langdontim fragmentsofthekeyfloweringgenegiganteaareassociatedwithhelitrontypesequencesinthepooideaegrassloliumperenne AT thomasann fragmentsofthekeyfloweringgenegiganteaareassociatedwithhelitrontypesequencesinthepooideaegrassloliumperenne AT huanglin fragmentsofthekeyfloweringgenegiganteaareassociatedwithhelitrontypesequencesinthepooideaegrassloliumperenne AT farrarkerrie fragmentsofthekeyfloweringgenegiganteaareassociatedwithhelitrontypesequencesinthepooideaegrassloliumperenne AT kingjulie fragmentsofthekeyfloweringgenegiganteaareassociatedwithhelitrontypesequencesinthepooideaegrassloliumperenne AT armsteadian fragmentsofthekeyfloweringgenegiganteaareassociatedwithhelitrontypesequencesinthepooideaegrassloliumperenne |