Cargando…
Sample size calculation for microarray experiments with blocked one-way design
BACKGROUND: One of the main objectives of microarray analysis is to identify differentially expressed genes for different types of cells or treatments. Many statistical methods have been proposed to assess the treatment effects in microarray experiments. RESULTS: In this paper, we consider discovery...
Autores principales: | , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2009
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2702333/ https://www.ncbi.nlm.nih.gov/pubmed/19476634 http://dx.doi.org/10.1186/1471-2105-10-164 |
_version_ | 1782168760717672448 |
---|---|
author | Jung, Sin-Ho Sohn, Insuk George, Stephen L Feng, Liping Leppert, Phyllis C |
author_facet | Jung, Sin-Ho Sohn, Insuk George, Stephen L Feng, Liping Leppert, Phyllis C |
author_sort | Jung, Sin-Ho |
collection | PubMed |
description | BACKGROUND: One of the main objectives of microarray analysis is to identify differentially expressed genes for different types of cells or treatments. Many statistical methods have been proposed to assess the treatment effects in microarray experiments. RESULTS: In this paper, we consider discovery of the genes that are differentially expressed among K (> 2) treatments when each set of K arrays consists of a block. In this case, the array data among K treatments tend to be correlated because of block effect. We propose to use the blocked one-way ANOVA F-statistic to test if each gene is differentially expressed among K treatments. The marginal p-values are calculated using a permutation method accounting for the block effect, adjusting for the multiplicity of the testing procedure by controlling the false discovery rate (FDR). We propose a sample size calculation method for microarray experiments with a blocked one-way design. With FDR level and effect sizes of genes specified, our formula provides a sample size for a given number of true discoveries. CONCLUSION: The calculated sample size is shown via simulations to provide an accurate number of true discoveries while controlling the FDR at the desired level. |
format | Text |
id | pubmed-2702333 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2009 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-27023332009-06-27 Sample size calculation for microarray experiments with blocked one-way design Jung, Sin-Ho Sohn, Insuk George, Stephen L Feng, Liping Leppert, Phyllis C BMC Bioinformatics Methodology Article BACKGROUND: One of the main objectives of microarray analysis is to identify differentially expressed genes for different types of cells or treatments. Many statistical methods have been proposed to assess the treatment effects in microarray experiments. RESULTS: In this paper, we consider discovery of the genes that are differentially expressed among K (> 2) treatments when each set of K arrays consists of a block. In this case, the array data among K treatments tend to be correlated because of block effect. We propose to use the blocked one-way ANOVA F-statistic to test if each gene is differentially expressed among K treatments. The marginal p-values are calculated using a permutation method accounting for the block effect, adjusting for the multiplicity of the testing procedure by controlling the false discovery rate (FDR). We propose a sample size calculation method for microarray experiments with a blocked one-way design. With FDR level and effect sizes of genes specified, our formula provides a sample size for a given number of true discoveries. CONCLUSION: The calculated sample size is shown via simulations to provide an accurate number of true discoveries while controlling the FDR at the desired level. BioMed Central 2009-05-28 /pmc/articles/PMC2702333/ /pubmed/19476634 http://dx.doi.org/10.1186/1471-2105-10-164 Text en Copyright © 2009 Jung et al; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( (http://creativecommons.org/licenses/by/2.0) ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Methodology Article Jung, Sin-Ho Sohn, Insuk George, Stephen L Feng, Liping Leppert, Phyllis C Sample size calculation for microarray experiments with blocked one-way design |
title | Sample size calculation for microarray experiments with blocked one-way design |
title_full | Sample size calculation for microarray experiments with blocked one-way design |
title_fullStr | Sample size calculation for microarray experiments with blocked one-way design |
title_full_unstemmed | Sample size calculation for microarray experiments with blocked one-way design |
title_short | Sample size calculation for microarray experiments with blocked one-way design |
title_sort | sample size calculation for microarray experiments with blocked one-way design |
topic | Methodology Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2702333/ https://www.ncbi.nlm.nih.gov/pubmed/19476634 http://dx.doi.org/10.1186/1471-2105-10-164 |
work_keys_str_mv | AT jungsinho samplesizecalculationformicroarrayexperimentswithblockedonewaydesign AT sohninsuk samplesizecalculationformicroarrayexperimentswithblockedonewaydesign AT georgestephenl samplesizecalculationformicroarrayexperimentswithblockedonewaydesign AT fengliping samplesizecalculationformicroarrayexperimentswithblockedonewaydesign AT leppertphyllisc samplesizecalculationformicroarrayexperimentswithblockedonewaydesign |