Cargando…
Developing Prognostic Systems of Cancer Patients by Ensemble Clustering
Accurate prediction of survival rates of cancer patients is often key to stratify patients for prognosis and treatment. Survival prediction is often accomplished by the TNM system that involves only three factors: tumor extent, lymph node involvement, and metastasis. This prediction from the TNM has...
Autores principales: | Chen, Dechang, Xing, Kai, Henson, Donald, Sheng, Li, Schwartz, Arnold M., Cheng, Xiuzhen |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2009
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2702512/ https://www.ncbi.nlm.nih.gov/pubmed/19584918 http://dx.doi.org/10.1155/2009/632786 |
Ejemplares similares
-
On an ensemble algorithm for clustering cancer patient data
por: Qi, Ran, et al.
Publicado: (2013) -
Creating prognostic systems for cancer patients: A demonstration using breast cancer
por: Hueman, Mathew T., et al.
Publicado: (2018) -
A prognostic system for epithelial ovarian carcinomas using machine learning
por: Grimley, Philip M., et al.
Publicado: (2021) -
Pattern recognition and string matching
por: Chen, Dechang, et al.
Publicado: (2002) -
Expanding the TNM for cancers of the colon and rectum using machine learning: a demonstration
por: Hueman, Matthew, et al.
Publicado: (2019)