Cargando…
Cortical spreading ischaemia is a novel process involved in ischaemic damage in patients with aneurysmal subarachnoid haemorrhage
The term cortical spreading depolarization (CSD) describes a wave of mass neuronal depolarization associated with net influx of cations and water. Clusters of prolonged CSDs were measured time-locked to progressive ischaemic damage in human cortex. CSD induces tone alterations in resistance vessels,...
Autores principales: | , , , , , , , , , , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2009
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2702835/ https://www.ncbi.nlm.nih.gov/pubmed/19420089 http://dx.doi.org/10.1093/brain/awp102 |
_version_ | 1782168801169637376 |
---|---|
author | Dreier, Jens P. Major, Sebastian Manning, Andrew Woitzik, Johannes Drenckhahn, Chistoph Steinbrink, Jens Tolias, Christos Oliveira-Ferreira, Ana I. Fabricius, Martin Hartings, Jed A. Vajkoczy, Peter Lauritzen, Martin Dirnagl, Ulrich Bohner, Georg Strong, Anthony J. |
author_facet | Dreier, Jens P. Major, Sebastian Manning, Andrew Woitzik, Johannes Drenckhahn, Chistoph Steinbrink, Jens Tolias, Christos Oliveira-Ferreira, Ana I. Fabricius, Martin Hartings, Jed A. Vajkoczy, Peter Lauritzen, Martin Dirnagl, Ulrich Bohner, Georg Strong, Anthony J. |
author_sort | Dreier, Jens P. |
collection | PubMed |
description | The term cortical spreading depolarization (CSD) describes a wave of mass neuronal depolarization associated with net influx of cations and water. Clusters of prolonged CSDs were measured time-locked to progressive ischaemic damage in human cortex. CSD induces tone alterations in resistance vessels, causing either transient hyperperfusion (physiological haemodynamic response) in healthy tissue; or hypoperfusion [inverse haemodynamic response = cortical spreading ischaemia (CSI)] in tissue at risk for progressive damage, which has so far only been shown experimentally. Here, we performed a prospective, multicentre study in 13 patients with aneurysmal subarachnoid haemorrhage, using novel subdural opto-electrode technology for simultaneous laser-Doppler flowmetry (LDF) and direct current-electrocorticography, combined with measurements of tissue partial pressure of oxygen (ptiO(2)). Regional cerebral blood flow and electrocorticography were simultaneously recorded in 417 CSDs. Isolated CSDs occurred in 12 patients and were associated with either physiological, absent or inverse haemodynamic responses. Whereas the physiological haemodynamic response caused tissue hyperoxia, the inverse response led to tissue hypoxia. Clusters of prolonged CSDs were measured in five patients in close proximity to structural brain damage as assessed by neuroimaging. Clusters were associated with CSD-induced spreading hypoperfusions, which were significantly longer in duration (up to 144 min) than those of isolated CSDs. Thus, oxygen depletion caused by the inverse haemodynamic response may contribute to the establishment of clusters of prolonged CSDs and lesion progression. Combined electrocorticography and perfusion monitoring also revealed a characteristic vascular signature that might be used for non-invasive detection of CSD. Low-frequency vascular fluctuations (LF-VF) (f < 0.1 Hz), detectable by functional imaging methods, are determined by the brain's resting neuronal activity. CSD provides a depolarization block of the resting activity, recorded electrophysiologically as spreading depression of high-frequency-electrocorticography activity. Accordingly, we observed a spreading suppression of LF-VF, which accompanied spreading depression of high-frequency-electrocorticography activity, independently of whether CSD was associated with a physiological, absent or inverse haemodynamic response. Spreading suppressions of LF-VF thus allow the differentiation of progressive ischaemia and repair phases in a fashion similar to that shown previously for spreading depressions of high-frequency-electrocorticography activity. In conclusion, it is suggested that (i) CSI is a novel human disease mechanism associated with lesion development and a potential target for therapeutic intervention in stroke; and that (ii) prolonged spreading suppressions of LF-VF are a novel ‘functional marker’ for progressive ischaemia. |
format | Text |
id | pubmed-2702835 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2009 |
publisher | Oxford University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-27028352009-06-30 Cortical spreading ischaemia is a novel process involved in ischaemic damage in patients with aneurysmal subarachnoid haemorrhage Dreier, Jens P. Major, Sebastian Manning, Andrew Woitzik, Johannes Drenckhahn, Chistoph Steinbrink, Jens Tolias, Christos Oliveira-Ferreira, Ana I. Fabricius, Martin Hartings, Jed A. Vajkoczy, Peter Lauritzen, Martin Dirnagl, Ulrich Bohner, Georg Strong, Anthony J. Brain Original Articles The term cortical spreading depolarization (CSD) describes a wave of mass neuronal depolarization associated with net influx of cations and water. Clusters of prolonged CSDs were measured time-locked to progressive ischaemic damage in human cortex. CSD induces tone alterations in resistance vessels, causing either transient hyperperfusion (physiological haemodynamic response) in healthy tissue; or hypoperfusion [inverse haemodynamic response = cortical spreading ischaemia (CSI)] in tissue at risk for progressive damage, which has so far only been shown experimentally. Here, we performed a prospective, multicentre study in 13 patients with aneurysmal subarachnoid haemorrhage, using novel subdural opto-electrode technology for simultaneous laser-Doppler flowmetry (LDF) and direct current-electrocorticography, combined with measurements of tissue partial pressure of oxygen (ptiO(2)). Regional cerebral blood flow and electrocorticography were simultaneously recorded in 417 CSDs. Isolated CSDs occurred in 12 patients and were associated with either physiological, absent or inverse haemodynamic responses. Whereas the physiological haemodynamic response caused tissue hyperoxia, the inverse response led to tissue hypoxia. Clusters of prolonged CSDs were measured in five patients in close proximity to structural brain damage as assessed by neuroimaging. Clusters were associated with CSD-induced spreading hypoperfusions, which were significantly longer in duration (up to 144 min) than those of isolated CSDs. Thus, oxygen depletion caused by the inverse haemodynamic response may contribute to the establishment of clusters of prolonged CSDs and lesion progression. Combined electrocorticography and perfusion monitoring also revealed a characteristic vascular signature that might be used for non-invasive detection of CSD. Low-frequency vascular fluctuations (LF-VF) (f < 0.1 Hz), detectable by functional imaging methods, are determined by the brain's resting neuronal activity. CSD provides a depolarization block of the resting activity, recorded electrophysiologically as spreading depression of high-frequency-electrocorticography activity. Accordingly, we observed a spreading suppression of LF-VF, which accompanied spreading depression of high-frequency-electrocorticography activity, independently of whether CSD was associated with a physiological, absent or inverse haemodynamic response. Spreading suppressions of LF-VF thus allow the differentiation of progressive ischaemia and repair phases in a fashion similar to that shown previously for spreading depressions of high-frequency-electrocorticography activity. In conclusion, it is suggested that (i) CSI is a novel human disease mechanism associated with lesion development and a potential target for therapeutic intervention in stroke; and that (ii) prolonged spreading suppressions of LF-VF are a novel ‘functional marker’ for progressive ischaemia. Oxford University Press 2009-07 2009-05-06 /pmc/articles/PMC2702835/ /pubmed/19420089 http://dx.doi.org/10.1093/brain/awp102 Text en © 2009 The Author(s) http://creativecommons.org/licenses/by-nc/2.0/uk/ This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/2.0/uk/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Original Articles Dreier, Jens P. Major, Sebastian Manning, Andrew Woitzik, Johannes Drenckhahn, Chistoph Steinbrink, Jens Tolias, Christos Oliveira-Ferreira, Ana I. Fabricius, Martin Hartings, Jed A. Vajkoczy, Peter Lauritzen, Martin Dirnagl, Ulrich Bohner, Georg Strong, Anthony J. Cortical spreading ischaemia is a novel process involved in ischaemic damage in patients with aneurysmal subarachnoid haemorrhage |
title | Cortical spreading ischaemia is a novel process involved in ischaemic damage in patients with aneurysmal subarachnoid haemorrhage |
title_full | Cortical spreading ischaemia is a novel process involved in ischaemic damage in patients with aneurysmal subarachnoid haemorrhage |
title_fullStr | Cortical spreading ischaemia is a novel process involved in ischaemic damage in patients with aneurysmal subarachnoid haemorrhage |
title_full_unstemmed | Cortical spreading ischaemia is a novel process involved in ischaemic damage in patients with aneurysmal subarachnoid haemorrhage |
title_short | Cortical spreading ischaemia is a novel process involved in ischaemic damage in patients with aneurysmal subarachnoid haemorrhage |
title_sort | cortical spreading ischaemia is a novel process involved in ischaemic damage in patients with aneurysmal subarachnoid haemorrhage |
topic | Original Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2702835/ https://www.ncbi.nlm.nih.gov/pubmed/19420089 http://dx.doi.org/10.1093/brain/awp102 |
work_keys_str_mv | AT dreierjensp corticalspreadingischaemiaisanovelprocessinvolvedinischaemicdamageinpatientswithaneurysmalsubarachnoidhaemorrhage AT majorsebastian corticalspreadingischaemiaisanovelprocessinvolvedinischaemicdamageinpatientswithaneurysmalsubarachnoidhaemorrhage AT manningandrew corticalspreadingischaemiaisanovelprocessinvolvedinischaemicdamageinpatientswithaneurysmalsubarachnoidhaemorrhage AT woitzikjohannes corticalspreadingischaemiaisanovelprocessinvolvedinischaemicdamageinpatientswithaneurysmalsubarachnoidhaemorrhage AT drenckhahnchistoph corticalspreadingischaemiaisanovelprocessinvolvedinischaemicdamageinpatientswithaneurysmalsubarachnoidhaemorrhage AT steinbrinkjens corticalspreadingischaemiaisanovelprocessinvolvedinischaemicdamageinpatientswithaneurysmalsubarachnoidhaemorrhage AT toliaschristos corticalspreadingischaemiaisanovelprocessinvolvedinischaemicdamageinpatientswithaneurysmalsubarachnoidhaemorrhage AT oliveiraferreiraanai corticalspreadingischaemiaisanovelprocessinvolvedinischaemicdamageinpatientswithaneurysmalsubarachnoidhaemorrhage AT fabriciusmartin corticalspreadingischaemiaisanovelprocessinvolvedinischaemicdamageinpatientswithaneurysmalsubarachnoidhaemorrhage AT hartingsjeda corticalspreadingischaemiaisanovelprocessinvolvedinischaemicdamageinpatientswithaneurysmalsubarachnoidhaemorrhage AT vajkoczypeter corticalspreadingischaemiaisanovelprocessinvolvedinischaemicdamageinpatientswithaneurysmalsubarachnoidhaemorrhage AT lauritzenmartin corticalspreadingischaemiaisanovelprocessinvolvedinischaemicdamageinpatientswithaneurysmalsubarachnoidhaemorrhage AT dirnaglulrich corticalspreadingischaemiaisanovelprocessinvolvedinischaemicdamageinpatientswithaneurysmalsubarachnoidhaemorrhage AT bohnergeorg corticalspreadingischaemiaisanovelprocessinvolvedinischaemicdamageinpatientswithaneurysmalsubarachnoidhaemorrhage AT stronganthonyj corticalspreadingischaemiaisanovelprocessinvolvedinischaemicdamageinpatientswithaneurysmalsubarachnoidhaemorrhage AT corticalspreadingischaemiaisanovelprocessinvolvedinischaemicdamageinpatientswithaneurysmalsubarachnoidhaemorrhage |