Cargando…

SENT: semantic features in text

We present SENT (semantic features in text), a functional interpretation tool based on literature analysis. SENT uses Non-negative Matrix Factorization to identify topics in the scientific articles related to a collection of genes or their products, and use them to group and summarize these genes. I...

Descripción completa

Detalles Bibliográficos
Autores principales: Vazquez, Miguel, Carmona-Saez, Pedro, Nogales-Cadenas, Ruben, Chagoyen, Monica, Tirado, Francisco, Carazo, Jose Maria, Pascual-Montano, Alberto
Formato: Texto
Lenguaje:English
Publicado: Oxford University Press 2009
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2703940/
https://www.ncbi.nlm.nih.gov/pubmed/19458159
http://dx.doi.org/10.1093/nar/gkp392
_version_ 1782168890465320960
author Vazquez, Miguel
Carmona-Saez, Pedro
Nogales-Cadenas, Ruben
Chagoyen, Monica
Tirado, Francisco
Carazo, Jose Maria
Pascual-Montano, Alberto
author_facet Vazquez, Miguel
Carmona-Saez, Pedro
Nogales-Cadenas, Ruben
Chagoyen, Monica
Tirado, Francisco
Carazo, Jose Maria
Pascual-Montano, Alberto
author_sort Vazquez, Miguel
collection PubMed
description We present SENT (semantic features in text), a functional interpretation tool based on literature analysis. SENT uses Non-negative Matrix Factorization to identify topics in the scientific articles related to a collection of genes or their products, and use them to group and summarize these genes. In addition, the application allows users to rank and explore the articles that best relate to the topics found, helping put the analysis results into context. This approach is useful as an exploratory step in the workflow of interpreting and understanding experimental data, shedding some light into the complex underlying biological mechanisms. This tool provides a user-friendly interface via a web site, and a programmatic access via a SOAP web server. SENT is freely accessible at http://sent.dacya.ucm.es.
format Text
id pubmed-2703940
institution National Center for Biotechnology Information
language English
publishDate 2009
publisher Oxford University Press
record_format MEDLINE/PubMed
spelling pubmed-27039402009-07-01 SENT: semantic features in text Vazquez, Miguel Carmona-Saez, Pedro Nogales-Cadenas, Ruben Chagoyen, Monica Tirado, Francisco Carazo, Jose Maria Pascual-Montano, Alberto Nucleic Acids Res Articles We present SENT (semantic features in text), a functional interpretation tool based on literature analysis. SENT uses Non-negative Matrix Factorization to identify topics in the scientific articles related to a collection of genes or their products, and use them to group and summarize these genes. In addition, the application allows users to rank and explore the articles that best relate to the topics found, helping put the analysis results into context. This approach is useful as an exploratory step in the workflow of interpreting and understanding experimental data, shedding some light into the complex underlying biological mechanisms. This tool provides a user-friendly interface via a web site, and a programmatic access via a SOAP web server. SENT is freely accessible at http://sent.dacya.ucm.es. Oxford University Press 2009-07-01 2009-05-20 /pmc/articles/PMC2703940/ /pubmed/19458159 http://dx.doi.org/10.1093/nar/gkp392 Text en © 2009 The Author(s) http://creativecommons.org/licenses/by-nc/2.0/uk/ This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/2.0/uk/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Articles
Vazquez, Miguel
Carmona-Saez, Pedro
Nogales-Cadenas, Ruben
Chagoyen, Monica
Tirado, Francisco
Carazo, Jose Maria
Pascual-Montano, Alberto
SENT: semantic features in text
title SENT: semantic features in text
title_full SENT: semantic features in text
title_fullStr SENT: semantic features in text
title_full_unstemmed SENT: semantic features in text
title_short SENT: semantic features in text
title_sort sent: semantic features in text
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2703940/
https://www.ncbi.nlm.nih.gov/pubmed/19458159
http://dx.doi.org/10.1093/nar/gkp392
work_keys_str_mv AT vazquezmiguel sentsemanticfeaturesintext
AT carmonasaezpedro sentsemanticfeaturesintext
AT nogalescadenasruben sentsemanticfeaturesintext
AT chagoyenmonica sentsemanticfeaturesintext
AT tiradofrancisco sentsemanticfeaturesintext
AT carazojosemaria sentsemanticfeaturesintext
AT pascualmontanoalberto sentsemanticfeaturesintext