Cargando…
SENT: semantic features in text
We present SENT (semantic features in text), a functional interpretation tool based on literature analysis. SENT uses Non-negative Matrix Factorization to identify topics in the scientific articles related to a collection of genes or their products, and use them to group and summarize these genes. I...
Autores principales: | Vazquez, Miguel, Carmona-Saez, Pedro, Nogales-Cadenas, Ruben, Chagoyen, Monica, Tirado, Francisco, Carazo, Jose Maria, Pascual-Montano, Alberto |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2009
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2703940/ https://www.ncbi.nlm.nih.gov/pubmed/19458159 http://dx.doi.org/10.1093/nar/gkp392 |
Ejemplares similares
-
Discovering semantic features in the literature: a foundation for building functional associations
por: Chagoyen, Monica, et al.
Publicado: (2006) -
GENECODIS: a web-based tool for finding significant concurrent annotations in gene lists
por: Carmona-Saez, Pedro, et al.
Publicado: (2007) -
GeneCodis: interpreting gene lists through enrichment analysis and integration of diverse biological information
por: Nogales-Cadenas, Ruben, et al.
Publicado: (2009) -
MARQ: an online tool to mine GEO for experiments with similar or opposite gene expression signatures
por: Vazquez, Miguel, et al.
Publicado: (2010) -
bioNMF: a versatile tool for non-negative matrix factorization in biology
por: Pascual-Montano, Alberto, et al.
Publicado: (2006)