Cargando…
The central nervous system of sea cucumbers (Echinodermata: Holothuroidea) shows positive immunostaining for a chordate glial secretion
BACKGROUND: Echinoderms and chordates belong to the same monophyletic taxon, the Deuterostomia. In spite of significant differences in body plan organization, the two phyla may share more common traits than was thought previously. Of particular interest are the common features in the organization of...
Autores principales: | , , , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2009
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2705372/ https://www.ncbi.nlm.nih.gov/pubmed/19538733 http://dx.doi.org/10.1186/1742-9994-6-11 |
_version_ | 1782168985151733760 |
---|---|
author | Mashanov, Vladimir S Zueva, Olga R Heinzeller, Thomas Aschauer, Beate Naumann, Wilfried W Grondona, Jesus M Cifuentes, Manuel Garcia-Arraras, Jose E |
author_facet | Mashanov, Vladimir S Zueva, Olga R Heinzeller, Thomas Aschauer, Beate Naumann, Wilfried W Grondona, Jesus M Cifuentes, Manuel Garcia-Arraras, Jose E |
author_sort | Mashanov, Vladimir S |
collection | PubMed |
description | BACKGROUND: Echinoderms and chordates belong to the same monophyletic taxon, the Deuterostomia. In spite of significant differences in body plan organization, the two phyla may share more common traits than was thought previously. Of particular interest are the common features in the organization of the central nervous system. The present study employs two polyclonal antisera raised against bovine Reissner's substance (RS), a secretory product produced by glial cells of the subcomissural organ, to study RS-like immunoreactivity in the central nervous system of sea cucumbers. RESULTS: In the ectoneural division of the nervous system, both antisera recognize the content of secretory vacuoles in the apical cytoplasm of the radial glia-like cells of the neuroepithelium and in the flattened glial cells of the non-neural epineural roof epithelium. The secreted immunopositive material seems to form a thin layer covering the cell apices. There is no accumulation of the immunoreactive material on the apical surface of the hyponeural neuroepithelium or the hyponeural roof epithelium. Besides labelling the supporting cells and flattened glial cells of the epineural roof epithelium, both anti-RS antisera reveal a previously unknown putative glial cell type within the neural parenchyma of the holothurian nervous system. CONCLUSION: Our results show that: a) the glial cells of the holothurian tubular nervous system produce a material similar to Reissner's substance known to be synthesized by secretory glial cells in all chordates studied so far; b) the nervous system of sea cucumbers shows a previously unrealized complexity of glial organization. Our findings also provide significant clues for interpretation of the evolution of the nervous system in the Deuterostomia. It is suggested that echinoderms and chordates might have inherited the RS-producing radial glial cell type from the central nervous system of their common ancestor, i.e., the last common ancestor of all the Deuterostomia. |
format | Text |
id | pubmed-2705372 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2009 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-27053722009-07-03 The central nervous system of sea cucumbers (Echinodermata: Holothuroidea) shows positive immunostaining for a chordate glial secretion Mashanov, Vladimir S Zueva, Olga R Heinzeller, Thomas Aschauer, Beate Naumann, Wilfried W Grondona, Jesus M Cifuentes, Manuel Garcia-Arraras, Jose E Front Zool Research BACKGROUND: Echinoderms and chordates belong to the same monophyletic taxon, the Deuterostomia. In spite of significant differences in body plan organization, the two phyla may share more common traits than was thought previously. Of particular interest are the common features in the organization of the central nervous system. The present study employs two polyclonal antisera raised against bovine Reissner's substance (RS), a secretory product produced by glial cells of the subcomissural organ, to study RS-like immunoreactivity in the central nervous system of sea cucumbers. RESULTS: In the ectoneural division of the nervous system, both antisera recognize the content of secretory vacuoles in the apical cytoplasm of the radial glia-like cells of the neuroepithelium and in the flattened glial cells of the non-neural epineural roof epithelium. The secreted immunopositive material seems to form a thin layer covering the cell apices. There is no accumulation of the immunoreactive material on the apical surface of the hyponeural neuroepithelium or the hyponeural roof epithelium. Besides labelling the supporting cells and flattened glial cells of the epineural roof epithelium, both anti-RS antisera reveal a previously unknown putative glial cell type within the neural parenchyma of the holothurian nervous system. CONCLUSION: Our results show that: a) the glial cells of the holothurian tubular nervous system produce a material similar to Reissner's substance known to be synthesized by secretory glial cells in all chordates studied so far; b) the nervous system of sea cucumbers shows a previously unrealized complexity of glial organization. Our findings also provide significant clues for interpretation of the evolution of the nervous system in the Deuterostomia. It is suggested that echinoderms and chordates might have inherited the RS-producing radial glial cell type from the central nervous system of their common ancestor, i.e., the last common ancestor of all the Deuterostomia. BioMed Central 2009-06-18 /pmc/articles/PMC2705372/ /pubmed/19538733 http://dx.doi.org/10.1186/1742-9994-6-11 Text en Copyright © 2009 Mashanov et al; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( (http://creativecommons.org/licenses/by/2.0) ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Mashanov, Vladimir S Zueva, Olga R Heinzeller, Thomas Aschauer, Beate Naumann, Wilfried W Grondona, Jesus M Cifuentes, Manuel Garcia-Arraras, Jose E The central nervous system of sea cucumbers (Echinodermata: Holothuroidea) shows positive immunostaining for a chordate glial secretion |
title | The central nervous system of sea cucumbers (Echinodermata: Holothuroidea) shows positive immunostaining for a chordate glial secretion |
title_full | The central nervous system of sea cucumbers (Echinodermata: Holothuroidea) shows positive immunostaining for a chordate glial secretion |
title_fullStr | The central nervous system of sea cucumbers (Echinodermata: Holothuroidea) shows positive immunostaining for a chordate glial secretion |
title_full_unstemmed | The central nervous system of sea cucumbers (Echinodermata: Holothuroidea) shows positive immunostaining for a chordate glial secretion |
title_short | The central nervous system of sea cucumbers (Echinodermata: Holothuroidea) shows positive immunostaining for a chordate glial secretion |
title_sort | central nervous system of sea cucumbers (echinodermata: holothuroidea) shows positive immunostaining for a chordate glial secretion |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2705372/ https://www.ncbi.nlm.nih.gov/pubmed/19538733 http://dx.doi.org/10.1186/1742-9994-6-11 |
work_keys_str_mv | AT mashanovvladimirs thecentralnervoussystemofseacucumbersechinodermataholothuroideashowspositiveimmunostainingforachordateglialsecretion AT zuevaolgar thecentralnervoussystemofseacucumbersechinodermataholothuroideashowspositiveimmunostainingforachordateglialsecretion AT heinzellerthomas thecentralnervoussystemofseacucumbersechinodermataholothuroideashowspositiveimmunostainingforachordateglialsecretion AT aschauerbeate thecentralnervoussystemofseacucumbersechinodermataholothuroideashowspositiveimmunostainingforachordateglialsecretion AT naumannwilfriedw thecentralnervoussystemofseacucumbersechinodermataholothuroideashowspositiveimmunostainingforachordateglialsecretion AT grondonajesusm thecentralnervoussystemofseacucumbersechinodermataholothuroideashowspositiveimmunostainingforachordateglialsecretion AT cifuentesmanuel thecentralnervoussystemofseacucumbersechinodermataholothuroideashowspositiveimmunostainingforachordateglialsecretion AT garciaarrarasjosee thecentralnervoussystemofseacucumbersechinodermataholothuroideashowspositiveimmunostainingforachordateglialsecretion AT mashanovvladimirs centralnervoussystemofseacucumbersechinodermataholothuroideashowspositiveimmunostainingforachordateglialsecretion AT zuevaolgar centralnervoussystemofseacucumbersechinodermataholothuroideashowspositiveimmunostainingforachordateglialsecretion AT heinzellerthomas centralnervoussystemofseacucumbersechinodermataholothuroideashowspositiveimmunostainingforachordateglialsecretion AT aschauerbeate centralnervoussystemofseacucumbersechinodermataholothuroideashowspositiveimmunostainingforachordateglialsecretion AT naumannwilfriedw centralnervoussystemofseacucumbersechinodermataholothuroideashowspositiveimmunostainingforachordateglialsecretion AT grondonajesusm centralnervoussystemofseacucumbersechinodermataholothuroideashowspositiveimmunostainingforachordateglialsecretion AT cifuentesmanuel centralnervoussystemofseacucumbersechinodermataholothuroideashowspositiveimmunostainingforachordateglialsecretion AT garciaarrarasjosee centralnervoussystemofseacucumbersechinodermataholothuroideashowspositiveimmunostainingforachordateglialsecretion |