Cargando…

Improving interval estimation of binomial proportions

In this paper, we propose one new confidence interval for the binomial proportion; our interval is based on the Edgeworth expansion of a logit transformation of the sample proportion. We provide theoretical justification for the proposed interval and also compare the finite-sample performance of the...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhou, X.H., Li, C.M., Yang, Z.
Formato: Texto
Lenguaje:English
Publicado: The Royal Society 2008
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2706447/
https://www.ncbi.nlm.nih.gov/pubmed/18407898
http://dx.doi.org/10.1098/rsta.2008.0037
_version_ 1782169074933956608
author Zhou, X.H.
Li, C.M.
Yang, Z.
author_facet Zhou, X.H.
Li, C.M.
Yang, Z.
author_sort Zhou, X.H.
collection PubMed
description In this paper, we propose one new confidence interval for the binomial proportion; our interval is based on the Edgeworth expansion of a logit transformation of the sample proportion. We provide theoretical justification for the proposed interval and also compare the finite-sample performance of the proposed interval with the three best existing intervals—the Wilson interval, the Agresti–Coull interval and the Jeffreys interval—in terms of their coverage probabilities and expected lengths. We illustrate the proposed method in two real clinical studies.
format Text
id pubmed-2706447
institution National Center for Biotechnology Information
language English
publishDate 2008
publisher The Royal Society
record_format MEDLINE/PubMed
spelling pubmed-27064472009-08-03 Improving interval estimation of binomial proportions Zhou, X.H. Li, C.M. Yang, Z. Philos Trans A Math Phys Eng Sci Research Article In this paper, we propose one new confidence interval for the binomial proportion; our interval is based on the Edgeworth expansion of a logit transformation of the sample proportion. We provide theoretical justification for the proposed interval and also compare the finite-sample performance of the proposed interval with the three best existing intervals—the Wilson interval, the Agresti–Coull interval and the Jeffreys interval—in terms of their coverage probabilities and expected lengths. We illustrate the proposed method in two real clinical studies. The Royal Society 2008-04-11 2008-07-13 /pmc/articles/PMC2706447/ /pubmed/18407898 http://dx.doi.org/10.1098/rsta.2008.0037 Text en Copyright © 2008 The Royal Society http://creativecommons.org/licenses/by/2.5/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Article
Zhou, X.H.
Li, C.M.
Yang, Z.
Improving interval estimation of binomial proportions
title Improving interval estimation of binomial proportions
title_full Improving interval estimation of binomial proportions
title_fullStr Improving interval estimation of binomial proportions
title_full_unstemmed Improving interval estimation of binomial proportions
title_short Improving interval estimation of binomial proportions
title_sort improving interval estimation of binomial proportions
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2706447/
https://www.ncbi.nlm.nih.gov/pubmed/18407898
http://dx.doi.org/10.1098/rsta.2008.0037
work_keys_str_mv AT zhouxh improvingintervalestimationofbinomialproportions
AT licm improvingintervalestimationofbinomialproportions
AT yangz improvingintervalestimationofbinomialproportions