Cargando…

EM-REML estimation of covariance parameters in Gaussian mixed models for longitudinal data analysis

This paper presents procedures for implementing the EM algorithm to compute REML estimates of variance covariance components in Gaussian mixed models for longitudinal data analysis. The class of models considered includes random coefficient factors, stationary time processes and measurement errors....

Descripción completa

Detalles Bibliográficos
Autores principales: Foulley, Jean-Louis, Jaffrézic, Florence, Robert-Granié, Christèle
Formato: Texto
Lenguaje:English
Publicado: BioMed Central 2000
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2706866/
https://www.ncbi.nlm.nih.gov/pubmed/14736398
http://dx.doi.org/10.1186/1297-9686-32-2-129
_version_ 1782169105180131328
author Foulley, Jean-Louis
Jaffrézic, Florence
Robert-Granié, Christèle
author_facet Foulley, Jean-Louis
Jaffrézic, Florence
Robert-Granié, Christèle
author_sort Foulley, Jean-Louis
collection PubMed
description This paper presents procedures for implementing the EM algorithm to compute REML estimates of variance covariance components in Gaussian mixed models for longitudinal data analysis. The class of models considered includes random coefficient factors, stationary time processes and measurement errors. The EM algorithm allows separation of the computations pertaining to parameters involved in the random coefficient factors from those pertaining to the time processes and errors. The procedures are illustrated with Pothoff and Roy's data example on growth measurements taken on 11 girls and 16 boys at four ages. Several variants and extensions are discussed.
format Text
id pubmed-2706866
institution National Center for Biotechnology Information
language English
publishDate 2000
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-27068662009-07-08 EM-REML estimation of covariance parameters in Gaussian mixed models for longitudinal data analysis Foulley, Jean-Louis Jaffrézic, Florence Robert-Granié, Christèle Genet Sel Evol Research This paper presents procedures for implementing the EM algorithm to compute REML estimates of variance covariance components in Gaussian mixed models for longitudinal data analysis. The class of models considered includes random coefficient factors, stationary time processes and measurement errors. The EM algorithm allows separation of the computations pertaining to parameters involved in the random coefficient factors from those pertaining to the time processes and errors. The procedures are illustrated with Pothoff and Roy's data example on growth measurements taken on 11 girls and 16 boys at four ages. Several variants and extensions are discussed. BioMed Central 2000-03-15 /pmc/articles/PMC2706866/ /pubmed/14736398 http://dx.doi.org/10.1186/1297-9686-32-2-129 Text en Copyright © 2000 INRA, EDP Sciences
spellingShingle Research
Foulley, Jean-Louis
Jaffrézic, Florence
Robert-Granié, Christèle
EM-REML estimation of covariance parameters in Gaussian mixed models for longitudinal data analysis
title EM-REML estimation of covariance parameters in Gaussian mixed models for longitudinal data analysis
title_full EM-REML estimation of covariance parameters in Gaussian mixed models for longitudinal data analysis
title_fullStr EM-REML estimation of covariance parameters in Gaussian mixed models for longitudinal data analysis
title_full_unstemmed EM-REML estimation of covariance parameters in Gaussian mixed models for longitudinal data analysis
title_short EM-REML estimation of covariance parameters in Gaussian mixed models for longitudinal data analysis
title_sort em-reml estimation of covariance parameters in gaussian mixed models for longitudinal data analysis
topic Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2706866/
https://www.ncbi.nlm.nih.gov/pubmed/14736398
http://dx.doi.org/10.1186/1297-9686-32-2-129
work_keys_str_mv AT foulleyjeanlouis emremlestimationofcovarianceparametersingaussianmixedmodelsforlongitudinaldataanalysis
AT jaffrezicflorence emremlestimationofcovarianceparametersingaussianmixedmodelsforlongitudinaldataanalysis
AT robertgraniechristele emremlestimationofcovarianceparametersingaussianmixedmodelsforlongitudinaldataanalysis