Cargando…

Computation of identity by descent probabilities conditional on DNA markers via a Monte Carlo Markov Chain method

The accurate estimation of the probability of identity by descent (IBD) at loci or genome positions of interest is paramount to the genetic study of quantitative and disease resistance traits. We present a Monte Carlo Markov Chain method to compute IBD probabilities between individuals conditional o...

Descripción completa

Detalles Bibliográficos
Autores principales: Pérez-Enciso, Miguel, Varona, Luis, Rothschild, Max F
Formato: Texto
Lenguaje:English
Publicado: BioMed Central 2000
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2706872/
https://www.ncbi.nlm.nih.gov/pubmed/14736376
http://dx.doi.org/10.1186/1297-9686-32-5-467
_version_ 1782169106599903232
author Pérez-Enciso, Miguel
Varona, Luis
Rothschild, Max F
author_facet Pérez-Enciso, Miguel
Varona, Luis
Rothschild, Max F
author_sort Pérez-Enciso, Miguel
collection PubMed
description The accurate estimation of the probability of identity by descent (IBD) at loci or genome positions of interest is paramount to the genetic study of quantitative and disease resistance traits. We present a Monte Carlo Markov Chain method to compute IBD probabilities between individuals conditional on DNA markers and on pedigree information. The IBDs can be obtained in a completely general pedigree at any genome position of interest, and all marker and pedigree information available is used. The method can be split into two steps at each iteration. First, phases are sampled using current genotypic configurations of relatives and second, crossover events are simulated conditional on phases. Internal track is kept of all founder origins and crossovers such that the IBD probabilities averaged over replicates are rapidly obtained. We illustrate the method with some examples. First, we show that all pedigree information should be used to obtain line origin probabilities in F2 crosses. Second, the distribution of genetic relationships between half and full sibs is analysed in both simulated data and in real data from an F2 cross in pigs.
format Text
id pubmed-2706872
institution National Center for Biotechnology Information
language English
publishDate 2000
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-27068722009-07-08 Computation of identity by descent probabilities conditional on DNA markers via a Monte Carlo Markov Chain method Pérez-Enciso, Miguel Varona, Luis Rothschild, Max F Genet Sel Evol Research The accurate estimation of the probability of identity by descent (IBD) at loci or genome positions of interest is paramount to the genetic study of quantitative and disease resistance traits. We present a Monte Carlo Markov Chain method to compute IBD probabilities between individuals conditional on DNA markers and on pedigree information. The IBDs can be obtained in a completely general pedigree at any genome position of interest, and all marker and pedigree information available is used. The method can be split into two steps at each iteration. First, phases are sampled using current genotypic configurations of relatives and second, crossover events are simulated conditional on phases. Internal track is kept of all founder origins and crossovers such that the IBD probabilities averaged over replicates are rapidly obtained. We illustrate the method with some examples. First, we show that all pedigree information should be used to obtain line origin probabilities in F2 crosses. Second, the distribution of genetic relationships between half and full sibs is analysed in both simulated data and in real data from an F2 cross in pigs. BioMed Central 2000-09-15 /pmc/articles/PMC2706872/ /pubmed/14736376 http://dx.doi.org/10.1186/1297-9686-32-5-467 Text en Copyright © 2000 INRA, EDP Sciences
spellingShingle Research
Pérez-Enciso, Miguel
Varona, Luis
Rothschild, Max F
Computation of identity by descent probabilities conditional on DNA markers via a Monte Carlo Markov Chain method
title Computation of identity by descent probabilities conditional on DNA markers via a Monte Carlo Markov Chain method
title_full Computation of identity by descent probabilities conditional on DNA markers via a Monte Carlo Markov Chain method
title_fullStr Computation of identity by descent probabilities conditional on DNA markers via a Monte Carlo Markov Chain method
title_full_unstemmed Computation of identity by descent probabilities conditional on DNA markers via a Monte Carlo Markov Chain method
title_short Computation of identity by descent probabilities conditional on DNA markers via a Monte Carlo Markov Chain method
title_sort computation of identity by descent probabilities conditional on dna markers via a monte carlo markov chain method
topic Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2706872/
https://www.ncbi.nlm.nih.gov/pubmed/14736376
http://dx.doi.org/10.1186/1297-9686-32-5-467
work_keys_str_mv AT perezencisomiguel computationofidentitybydescentprobabilitiesconditionalondnamarkersviaamontecarlomarkovchainmethod
AT varonaluis computationofidentitybydescentprobabilitiesconditionalondnamarkersviaamontecarlomarkovchainmethod
AT rothschildmaxf computationofidentitybydescentprobabilitiesconditionalondnamarkersviaamontecarlomarkovchainmethod