Cargando…
Pharmacological, behavioural and mechanistic analysis of HIV-1 gp120 induced painful neuropathy
A painful neuropathy is frequently observed in people living with human immunodeficiency virus type 1 (HIV-1). The HIV coat protein, glycoprotein 120 (gp120), implicated in the pathogenesis of neurological disorders associated with HIV, is capable of initiating neurotoxic cascades via an interaction...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Lippincott Williams & Wilkins
2007
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2706950/ https://www.ncbi.nlm.nih.gov/pubmed/17433546 http://dx.doi.org/10.1016/j.pain.2007.02.015 |
Sumario: | A painful neuropathy is frequently observed in people living with human immunodeficiency virus type 1 (HIV-1). The HIV coat protein, glycoprotein 120 (gp120), implicated in the pathogenesis of neurological disorders associated with HIV, is capable of initiating neurotoxic cascades via an interaction with the CXCR4 and/or CCR5 chemokine receptors, which may underlie the pathogenesis of HIV-associated peripheral neuropathic pain. In order to elucidate the mechanisms underlying HIV-induced painful peripheral neuropathy, we have characterised pathological events in the peripheral and central nervous system following application of HIV-1 gp120 to the rat sciatic nerve. Perineural HIV-1 gp120 treatment induced a persistent mechanical hypersensitivity (44% decrease from baseline), but no alterations in sensitivity to thermal or cold stimuli, and thigmotactic (anxiety-like) behaviour in the open field. The mechanical hypersensitivity was sensitive to systemic treatment with gabapentin, morphine and the cannabinoid WIN 55,212-2, but not with amitriptyline. Immunohistochemical studies reveal: decreased intraepidermal nerve fibre density, macrophage infiltration into the peripheral nerve at the site of perineural HIV-1 gp120; changes in sensory neuron phenotype including expression of activating transcription factor 3 (ATF3) in 27% of cells, caspase-3 in 25% of cells, neuropeptide Y (NPY) in 12% of cells and galanin in 13% of cells and a spinal gliosis. These novel findings suggest that this model is not only useful for the elucidation of mechanisms underlying HIV-1-related peripheral neuropathy but may prove useful for preclinical assessment of drugs for the treatment of HIV-1 related peripheral neuropathic pain. |
---|