Cargando…
Developing a genetic approach to investigate the mechanism of mitochondrial competence for DNA import
Mitochondrial gene products are essential for the viability of eukaryote obligate aerobes. Consequently, mutations of the mitochondrial genome cause severe diseases in man and generate traits widely used in plant breeding. Pathogenic mutations can often be identified but direct genetic rescue remain...
Autores principales: | , , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Elsevier Pub. Co
2009
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2706985/ https://www.ncbi.nlm.nih.gov/pubmed/19056337 http://dx.doi.org/10.1016/j.bbabio.2008.11.001 |
_version_ | 1782169117110829056 |
---|---|
author | Weber-Lotfi, Frédérique Ibrahim, Noha Boesch, Pierre Cosset, Anne Konstantinov, Yuri Lightowlers, Robert N. Dietrich, André |
author_facet | Weber-Lotfi, Frédérique Ibrahim, Noha Boesch, Pierre Cosset, Anne Konstantinov, Yuri Lightowlers, Robert N. Dietrich, André |
author_sort | Weber-Lotfi, Frédérique |
collection | PubMed |
description | Mitochondrial gene products are essential for the viability of eukaryote obligate aerobes. Consequently, mutations of the mitochondrial genome cause severe diseases in man and generate traits widely used in plant breeding. Pathogenic mutations can often be identified but direct genetic rescue remains impossible because mitochondrial transformation is still to be achieved in higher eukaryotes. Along this line, it has been shown that isolated plant and mammalian mitochondria are naturally competent for importing linear DNA. However, it has proven difficult to understand how such large polyanions cross the mitochondrial membranes. The genetic tractability of Saccharomyces cerevisae could be a powerful tool to unravel this molecular mechanism. Here we show that isolated S. cerevisiae mitochondria can import linear DNA in a process sharing similar characteristics to plant and mammalian mitochondria. Based on biochemical data, translocation through the outer membrane is believed to be mediated by voltage-dependent anion channel (VDAC) isoforms in higher eukaryotes. Both confirming this hypothesis and validating the yeast model, we illustrate that mitochondria from S. cerevisiae strains deleted for the VDAC-1 or VDAC-2 gene are severely compromised in DNA import. The prospect is now open to screen further mutant yeast strains to identify the elusive inner membrane DNA transporter. |
format | Text |
id | pubmed-2706985 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2009 |
publisher | Elsevier Pub. Co |
record_format | MEDLINE/PubMed |
spelling | pubmed-27069852009-07-10 Developing a genetic approach to investigate the mechanism of mitochondrial competence for DNA import Weber-Lotfi, Frédérique Ibrahim, Noha Boesch, Pierre Cosset, Anne Konstantinov, Yuri Lightowlers, Robert N. Dietrich, André Biochim Biophys Acta Article Mitochondrial gene products are essential for the viability of eukaryote obligate aerobes. Consequently, mutations of the mitochondrial genome cause severe diseases in man and generate traits widely used in plant breeding. Pathogenic mutations can often be identified but direct genetic rescue remains impossible because mitochondrial transformation is still to be achieved in higher eukaryotes. Along this line, it has been shown that isolated plant and mammalian mitochondria are naturally competent for importing linear DNA. However, it has proven difficult to understand how such large polyanions cross the mitochondrial membranes. The genetic tractability of Saccharomyces cerevisae could be a powerful tool to unravel this molecular mechanism. Here we show that isolated S. cerevisiae mitochondria can import linear DNA in a process sharing similar characteristics to plant and mammalian mitochondria. Based on biochemical data, translocation through the outer membrane is believed to be mediated by voltage-dependent anion channel (VDAC) isoforms in higher eukaryotes. Both confirming this hypothesis and validating the yeast model, we illustrate that mitochondria from S. cerevisiae strains deleted for the VDAC-1 or VDAC-2 gene are severely compromised in DNA import. The prospect is now open to screen further mutant yeast strains to identify the elusive inner membrane DNA transporter. Elsevier Pub. Co 2009-05 /pmc/articles/PMC2706985/ /pubmed/19056337 http://dx.doi.org/10.1016/j.bbabio.2008.11.001 Text en © 2009 Elsevier B.V. https://creativecommons.org/licenses/by/4.0/ Open Access under CC BY 4.0 (https://creativecommons.org/licenses/by/4.0/) license |
spellingShingle | Article Weber-Lotfi, Frédérique Ibrahim, Noha Boesch, Pierre Cosset, Anne Konstantinov, Yuri Lightowlers, Robert N. Dietrich, André Developing a genetic approach to investigate the mechanism of mitochondrial competence for DNA import |
title | Developing a genetic approach to investigate the mechanism of mitochondrial competence for DNA import |
title_full | Developing a genetic approach to investigate the mechanism of mitochondrial competence for DNA import |
title_fullStr | Developing a genetic approach to investigate the mechanism of mitochondrial competence for DNA import |
title_full_unstemmed | Developing a genetic approach to investigate the mechanism of mitochondrial competence for DNA import |
title_short | Developing a genetic approach to investigate the mechanism of mitochondrial competence for DNA import |
title_sort | developing a genetic approach to investigate the mechanism of mitochondrial competence for dna import |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2706985/ https://www.ncbi.nlm.nih.gov/pubmed/19056337 http://dx.doi.org/10.1016/j.bbabio.2008.11.001 |
work_keys_str_mv | AT weberlotfifrederique developingageneticapproachtoinvestigatethemechanismofmitochondrialcompetencefordnaimport AT ibrahimnoha developingageneticapproachtoinvestigatethemechanismofmitochondrialcompetencefordnaimport AT boeschpierre developingageneticapproachtoinvestigatethemechanismofmitochondrialcompetencefordnaimport AT cossetanne developingageneticapproachtoinvestigatethemechanismofmitochondrialcompetencefordnaimport AT konstantinovyuri developingageneticapproachtoinvestigatethemechanismofmitochondrialcompetencefordnaimport AT lightowlersrobertn developingageneticapproachtoinvestigatethemechanismofmitochondrialcompetencefordnaimport AT dietrichandre developingageneticapproachtoinvestigatethemechanismofmitochondrialcompetencefordnaimport |