Cargando…

Functions of Phenylalanine Residues within the β-Barrel Stem of the Anthrax Toxin Pore

BACKGROUND: A key step of anthrax toxin action involves the formation of a protein-translocating pore within the endosomal membrane by the Protective Antigen (PA) moiety. Formation of this transmembrane pore by PA involves interaction of the seven 2β2–2β3 loops of the heptameric precursor to generat...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Jie, Vernier, Gregory, Fischer, Audrey, Collier, R. John
Formato: Texto
Lenguaje:English
Publicado: Public Library of Science 2009
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2706995/
https://www.ncbi.nlm.nih.gov/pubmed/19609431
http://dx.doi.org/10.1371/journal.pone.0006280
Descripción
Sumario:BACKGROUND: A key step of anthrax toxin action involves the formation of a protein-translocating pore within the endosomal membrane by the Protective Antigen (PA) moiety. Formation of this transmembrane pore by PA involves interaction of the seven 2β2–2β3 loops of the heptameric precursor to generate a 14-strand transmembrane β barrel. METHODOLOGY/PRINCIPAL FINDINGS: We examined the effects on pore formation, protein translocation, and cytotoxicity, of mutating two phenylalanines, F313 and F314, that lie at the tip the β barrel, and a third one, F324, that lies part way up the barrel. CONCLUSIONS/SIGNIFICANCE: Our results show that the function of these phenylalanine residues is to mediate membrane insertion and formation of stable transmembrane channels. Unlike F427, a key luminal residue in the cap of the pore, F313, F314, and F324 do not directly affect protein translocation through the pore. Our findings add to our knowledge of structure-function relationships of a key virulence factor of the anthrax bacillus.