Cargando…

A Family of Bacterial Cysteine Protease Type III Effectors Utilizes Acylation-dependent and -independent Strategies to Localize to Plasma Membranes

Bacterial phytopathogens employ a type III secretion system to deliver effector proteins into the plant cell to suppress defense pathways; however, the molecular mechanisms and subcellular localization strategies that drive effector function largely remain a mystery. Here, we demonstrate that the pl...

Descripción completa

Detalles Bibliográficos
Autores principales: Dowen, Robert H., Engel, James L., Shao, Feng, Ecker, Joseph R., Dixon, Jack E.
Formato: Texto
Lenguaje:English
Publicado: American Society for Biochemistry and Molecular Biology 2009
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2708883/
https://www.ncbi.nlm.nih.gov/pubmed/19346252
http://dx.doi.org/10.1074/jbc.M900519200
Descripción
Sumario:Bacterial phytopathogens employ a type III secretion system to deliver effector proteins into the plant cell to suppress defense pathways; however, the molecular mechanisms and subcellular localization strategies that drive effector function largely remain a mystery. Here, we demonstrate that the plant plasma membrane is the primary site for subcellular localization of the Pseudomonas syringae effector AvrPphB and five additional cysteine protease family members. AvrPphB and two AvrPphB-like effectors, ORF4 and NopT, autoproteolytically process following delivery into the plant cell to expose embedded sites for fatty acylation. Host-dependent lipidation of these three effectors directs plasma membrane localization and is required for the avirulence activity of AvrPphB. Surprisingly, the AvrPphB-like effectors RipT, HopC1, and HopN1 utilize an acylation-independent mechanism to localize to the cellular plasma membrane. Although some AvrPphB-like effectors employ acylation-independent localization strategies, others hijack the eukaryotic lipidation machinery to ensure plasma membrane localization, illustrating the diverse tactics employed by type III effectors to target specific subcellular compartments.