Cargando…
Membrane Bound Monomer of Staphylococcal α-Hemolysin Induces Caspase Activation and Apoptotic Cell Death despite Initiation of Membrane Repair Pathway
BACKGROUND: Wild type Staphylococcal α-hemolysin (α-HL) assembly on target mammalian cells usually results in necrotic form of cell death; however, caspase activation also occurs. The pathways of caspase activation due to binding/partial assembly by α-HL are unknown till date. RESULTS: Cells treated...
Autores principales: | , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2009
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2708924/ https://www.ncbi.nlm.nih.gov/pubmed/19621082 http://dx.doi.org/10.1371/journal.pone.0006293 |
Sumario: | BACKGROUND: Wild type Staphylococcal α-hemolysin (α-HL) assembly on target mammalian cells usually results in necrotic form of cell death; however, caspase activation also occurs. The pathways of caspase activation due to binding/partial assembly by α-HL are unknown till date. RESULTS: Cells treated with H35N (a mutant of α-HL that remains as membrane bound monomer), have been shown to accumulate hypodiploid nuclei, activate caspases and induce intrinsic mitochondrial apoptotic pathway. We have earlier shown that the binding and assembly of α-HL requires functional form of Caveolin-1 which is an integral part of caveolae. In this report, we show that the caveolae of mammalian cells, which undergo a continuous cycle of ‘kiss and run’ dynamics with the plasma membrane, have become immobile upon the binding of the monomer. The cells treated with H35N were unable to recover despite activation of membrane repair mechanism involving caspase-1 dependent activation of sterol regulatory element binding protein-1. CONCLUSIONS: This is for the first time we show the range of cellular changes and responses that take place immediately after the binding of the monomeric form of staphylococcal α-hemolysin. |
---|