Cargando…
An ensemble learning approach to reverse-engineering transcriptional regulatory networks from time-series gene expression data
BACKGROUND: One of the most challenging tasks in the post-genomic era is to reconstruct the transcriptional regulatory networks. The goal is to reveal, for each gene that responds to a certain biological event, which transcription factors affect its expression, and how a set of transcription factors...
Autores principales: | Ruan, Jianhua, Deng, Youping, Perkins, Edward J, Zhang, Weixiong |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2009
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2709269/ https://www.ncbi.nlm.nih.gov/pubmed/19594885 http://dx.doi.org/10.1186/1471-2164-10-S1-S8 |
Ejemplares similares
-
Time lagged information theoretic approaches to the reverse engineering of gene regulatory networks
por: Chaitankar, Vijender, et al.
Publicado: (2010) -
Learning the structure of gene regulatory networks from time series gene expression data
por: Li, Haoni, et al.
Publicado: (2011) -
Ensemble Deep Learning for Biomedical Time Series Classification
por: Jin, Lin-peng, et al.
Publicado: (2016) -
Comparison of probabilistic Boolean network and dynamic Bayesian network approaches for inferring gene regulatory networks
por: Li, Peng, et al.
Publicado: (2007) -
MORA and EnsembleTFpredictor: An ensemble approach to reveal functional transcription factor regulatory networks
por: Boyer, Kevin, et al.
Publicado: (2023)