Cargando…
Predicting the Subcellular Localization of Human Proteins Using Machine Learning and Exploratory Data Analysis
Identifying the subcellular localization of proteins is particularly helpful in the functional annotation of gene products. In this study, we use Machine Learning and Exploratory Data Analysis (EDA) techniques to examine and characterize amino acid sequences of human proteins localized in nine cellu...
Autores principales: | Acquaah-Mensah, George K., Leach, Sonia M., Guda, Chittibabu |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2006
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2709537/ https://www.ncbi.nlm.nih.gov/pubmed/16970551 http://dx.doi.org/10.1016/S1672-0229(06)60023-5 |
Ejemplares similares
-
pTARGET: a web server for predicting protein subcellular localization
por: Guda, Chittibabu
Publicado: (2006) -
Experimental validation of predicted subcellular localizations of human proteins
por: Chaturvedi, Nagendra K, et al.
Publicado: (2014) -
ngLOC: software and web server for predicting protein subcellular localization in prokaryotes and eukaryotes
por: King, Brian R, et al.
Publicado: (2012) -
ngLOC: an n-gram-based Bayesian method for estimating the subcellular proteomes of eukaryotes
por: King, Brian R, et al.
Publicado: (2007) -
Classification of breast cancer patients using somatic mutation profiles and machine learning approaches
por: Vural, Suleyman, et al.
Publicado: (2016)