Cargando…
A BAC-based physical map of the Hessian fly genome anchored to polytene chromosomes
BACKGROUND: The Hessian fly (Mayetiola destructor) is an important insect pest of wheat. It has tractable genetics, polytene chromosomes, and a small genome (158 Mb). Investigation of the Hessian fly presents excellent opportunities to study plant-insect interactions and the molecular mechanisms und...
Autores principales: | , , , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2009
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2709663/ https://www.ncbi.nlm.nih.gov/pubmed/19573234 http://dx.doi.org/10.1186/1471-2164-10-293 |
_version_ | 1782169322887577600 |
---|---|
author | Aggarwal, Rajat Benatti, Thiago R Gill, Navdeep Zhao, Chaoyang Chen, Ming-Shun Fellers, John P Schemerhorn, Brandon J Stuart, Jeff J |
author_facet | Aggarwal, Rajat Benatti, Thiago R Gill, Navdeep Zhao, Chaoyang Chen, Ming-Shun Fellers, John P Schemerhorn, Brandon J Stuart, Jeff J |
author_sort | Aggarwal, Rajat |
collection | PubMed |
description | BACKGROUND: The Hessian fly (Mayetiola destructor) is an important insect pest of wheat. It has tractable genetics, polytene chromosomes, and a small genome (158 Mb). Investigation of the Hessian fly presents excellent opportunities to study plant-insect interactions and the molecular mechanisms underlying genome imprinting and chromosome elimination. A physical map is needed to improve the ability to perform both positional cloning and comparative genomic analyses with the fully sequenced genomes of other dipteran species. RESULTS: An FPC-based genome wide physical map of the Hessian fly was constructed and anchored to the insect's polytene chromosomes. Bacterial artificial chromosome (BAC) clones corresponding to 12-fold coverage of the Hessian fly genome were fingerprinted, using high information content fingerprinting (HIFC) methodology, and end-sequenced. Fluorescence in situ hybridization (FISH) co-localized two BAC clones from each of the 196 longest contigs on the polytene chromosomes. An additional 70 contigs were positioned using a single FISH probe. The 266 FISH mapped contigs were evenly distributed and covered 60% of the genome (95,668 kb). The ends of the fingerprinted BACs were then sequenced to develop the capacity to create sequenced tagged site (STS) markers on the BACs in the map. Only 3.64% of the BAC-end sequence was composed of transposable elements, helicases, ribosomal repeats, simple sequence repeats, and sequences of low complexity. A relatively large fraction (14.27%) of the BES was comprised of multi-copy gene sequences. Nearly 1% of the end sequence was composed of simple sequence repeats (SSRs). CONCLUSION: This physical map provides the foundation for high-resolution genetic mapping, map-based cloning, and assembly of complete genome sequencing data. The results indicate that restriction fragment length heterogeneity in BAC libraries used to construct physical maps lower the length and the depth of the contigs, but is not an absolute barrier to the successful application of the technology. This map will serve as a genomic resource for accelerating gene discovery, genome sequencing, and the assembly of BAC sequences. The Hessian fly BAC-clone assembly, and the names and positions of the BAC clones used in the FISH experiments are publically available at . |
format | Text |
id | pubmed-2709663 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2009 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-27096632009-07-14 A BAC-based physical map of the Hessian fly genome anchored to polytene chromosomes Aggarwal, Rajat Benatti, Thiago R Gill, Navdeep Zhao, Chaoyang Chen, Ming-Shun Fellers, John P Schemerhorn, Brandon J Stuart, Jeff J BMC Genomics Research Article BACKGROUND: The Hessian fly (Mayetiola destructor) is an important insect pest of wheat. It has tractable genetics, polytene chromosomes, and a small genome (158 Mb). Investigation of the Hessian fly presents excellent opportunities to study plant-insect interactions and the molecular mechanisms underlying genome imprinting and chromosome elimination. A physical map is needed to improve the ability to perform both positional cloning and comparative genomic analyses with the fully sequenced genomes of other dipteran species. RESULTS: An FPC-based genome wide physical map of the Hessian fly was constructed and anchored to the insect's polytene chromosomes. Bacterial artificial chromosome (BAC) clones corresponding to 12-fold coverage of the Hessian fly genome were fingerprinted, using high information content fingerprinting (HIFC) methodology, and end-sequenced. Fluorescence in situ hybridization (FISH) co-localized two BAC clones from each of the 196 longest contigs on the polytene chromosomes. An additional 70 contigs were positioned using a single FISH probe. The 266 FISH mapped contigs were evenly distributed and covered 60% of the genome (95,668 kb). The ends of the fingerprinted BACs were then sequenced to develop the capacity to create sequenced tagged site (STS) markers on the BACs in the map. Only 3.64% of the BAC-end sequence was composed of transposable elements, helicases, ribosomal repeats, simple sequence repeats, and sequences of low complexity. A relatively large fraction (14.27%) of the BES was comprised of multi-copy gene sequences. Nearly 1% of the end sequence was composed of simple sequence repeats (SSRs). CONCLUSION: This physical map provides the foundation for high-resolution genetic mapping, map-based cloning, and assembly of complete genome sequencing data. The results indicate that restriction fragment length heterogeneity in BAC libraries used to construct physical maps lower the length and the depth of the contigs, but is not an absolute barrier to the successful application of the technology. This map will serve as a genomic resource for accelerating gene discovery, genome sequencing, and the assembly of BAC sequences. The Hessian fly BAC-clone assembly, and the names and positions of the BAC clones used in the FISH experiments are publically available at . BioMed Central 2009-07-02 /pmc/articles/PMC2709663/ /pubmed/19573234 http://dx.doi.org/10.1186/1471-2164-10-293 Text en Copyright © 2009 Aggarwal et al; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( (http://creativecommons.org/licenses/by/2.0) ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Aggarwal, Rajat Benatti, Thiago R Gill, Navdeep Zhao, Chaoyang Chen, Ming-Shun Fellers, John P Schemerhorn, Brandon J Stuart, Jeff J A BAC-based physical map of the Hessian fly genome anchored to polytene chromosomes |
title | A BAC-based physical map of the Hessian fly genome anchored to polytene chromosomes |
title_full | A BAC-based physical map of the Hessian fly genome anchored to polytene chromosomes |
title_fullStr | A BAC-based physical map of the Hessian fly genome anchored to polytene chromosomes |
title_full_unstemmed | A BAC-based physical map of the Hessian fly genome anchored to polytene chromosomes |
title_short | A BAC-based physical map of the Hessian fly genome anchored to polytene chromosomes |
title_sort | bac-based physical map of the hessian fly genome anchored to polytene chromosomes |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2709663/ https://www.ncbi.nlm.nih.gov/pubmed/19573234 http://dx.doi.org/10.1186/1471-2164-10-293 |
work_keys_str_mv | AT aggarwalrajat abacbasedphysicalmapofthehessianflygenomeanchoredtopolytenechromosomes AT benattithiagor abacbasedphysicalmapofthehessianflygenomeanchoredtopolytenechromosomes AT gillnavdeep abacbasedphysicalmapofthehessianflygenomeanchoredtopolytenechromosomes AT zhaochaoyang abacbasedphysicalmapofthehessianflygenomeanchoredtopolytenechromosomes AT chenmingshun abacbasedphysicalmapofthehessianflygenomeanchoredtopolytenechromosomes AT fellersjohnp abacbasedphysicalmapofthehessianflygenomeanchoredtopolytenechromosomes AT schemerhornbrandonj abacbasedphysicalmapofthehessianflygenomeanchoredtopolytenechromosomes AT stuartjeffj abacbasedphysicalmapofthehessianflygenomeanchoredtopolytenechromosomes AT aggarwalrajat bacbasedphysicalmapofthehessianflygenomeanchoredtopolytenechromosomes AT benattithiagor bacbasedphysicalmapofthehessianflygenomeanchoredtopolytenechromosomes AT gillnavdeep bacbasedphysicalmapofthehessianflygenomeanchoredtopolytenechromosomes AT zhaochaoyang bacbasedphysicalmapofthehessianflygenomeanchoredtopolytenechromosomes AT chenmingshun bacbasedphysicalmapofthehessianflygenomeanchoredtopolytenechromosomes AT fellersjohnp bacbasedphysicalmapofthehessianflygenomeanchoredtopolytenechromosomes AT schemerhornbrandonj bacbasedphysicalmapofthehessianflygenomeanchoredtopolytenechromosomes AT stuartjeffj bacbasedphysicalmapofthehessianflygenomeanchoredtopolytenechromosomes |