Cargando…
Optimum land cover products for use in a Glossina-morsitans habitat model of Kenya
BACKGROUND: Tsetse flies are the primary vector for African trypanosomiasis, a disease that affects both humans and livestock across the continent of Africa. In 1973 tsetse flies were estimated to inhabit 22% of Kenya; by 1996 that number had risen to roughly 34%. Efforts to control the disease were...
Autores principales: | , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2009
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2710327/ https://www.ncbi.nlm.nih.gov/pubmed/19563674 http://dx.doi.org/10.1186/1476-072X-8-39 |
Sumario: | BACKGROUND: Tsetse flies are the primary vector for African trypanosomiasis, a disease that affects both humans and livestock across the continent of Africa. In 1973 tsetse flies were estimated to inhabit 22% of Kenya; by 1996 that number had risen to roughly 34%. Efforts to control the disease were hampered by a lack of information and costs associated with the identification of infested areas. Given changing spatial and demographic factors, a model that can predict suitable tsetse fly habitat based on land cover and climate change is critical to efforts aimed at controlling the disease. In this paper we present a generalizable method, using a modified Mapcurves goodness of fit test, to evaluate the existing publicly available land cover products to determine which products perform the best at identifying suitable tsetse fly land cover. RESULTS: For single date applications, Africover was determined to be the best land use land cover (LULC) product for tsetse modeling. However, for changing habitats, whether climatically or anthropogenically forced, the IGBP DISCover and MODIS type 1 products where determined to be most practical. CONCLUSION: The method can be used to differentiate between various LULC products and be applied to any such research when there is a known relationship between a species and land cover. |
---|