Cargando…
Computer tomographic investigation of subcutaneous adipose tissue as an indicator of body composition
BACKGROUND: Modern computer tomography (CT) equipment can be used to acquire whole-body data from large animals such as pigs in minutes or less. In some circumstances, computer assisted analysis of the resulting image data can identify and measure anatomical features. The thickness of subcutaneous a...
Autores principales: | , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2009
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2710334/ https://www.ncbi.nlm.nih.gov/pubmed/19570228 http://dx.doi.org/10.1186/1751-0147-51-28 |
Sumario: | BACKGROUND: Modern computer tomography (CT) equipment can be used to acquire whole-body data from large animals such as pigs in minutes or less. In some circumstances, computer assisted analysis of the resulting image data can identify and measure anatomical features. The thickness of subcutaneous adipose tissue at a specific site measured by ultrasound, is used in the pig industry to assess adiposity and inform management decisions that have an impact on reproduction, food conversion performance and sow longevity. The measurement site, called "P2", is used throughout the industry. We propose that CT can be used to measure subcutaneous adipose tissue thickness and identify novel measurement sites that can be used as predictors of general adiposity. METHODS: Growing pigs (N = 12), were each CT scanned on three occasions. From these data the total volume of adipose tissue was determined and expressed as a proportion of total volume (fat-index). A computer algorithm was used to determined 10,201 subcutaneous adipose thickness measurements in each pig for each scan. From these data, sites were selected where correlation with fat-index was optimal. RESULTS: Image analysis correctly identified the limits of the relevant tissues and automated measurements were successfully generated. Two sites on the animal were identified where there was optimal correlation with fat-index. The first of these was located 4 intercostal spaces cranial to the caudal extremity of the last rib, the other, a further 5 intercostal spaces cranially. CONCLUSION: The approach to image analysis reported permits the creation of various maps showing adipose thickness or correlation of thickness with other variables by location on the surface of the pig. The method identified novel adipose thickness measurement positions that are superior (as predictors of adiposity) to the site which is in current use. A similar approach could be used in other situations to quantify potential links between subcutaneous adiposity and disease or production traits. |
---|