Cargando…

Nemo kinase interacts with Mad to coordinate synaptic growth at the Drosophila neuromuscular junction

Bone morphogenic protein (BMP) signaling is essential for the coordinated assembly of the synapse, but we know little about how BMP signaling is modulated in neurons. Our findings indicate that the Nemo (Nmo) kinase modulates BMP signaling in motor neurons. nmo mutants show synaptic structural defec...

Descripción completa

Detalles Bibliográficos
Autores principales: Merino, Carlos, Penney, Jay, González, Miranda, Tsurudome, Kazuya, Moujahidine, Myriam, O'Connor, Michael B., Verheyen, Esther M., Haghighi, Pejmun
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 2009
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2711574/
https://www.ncbi.nlm.nih.gov/pubmed/19451277
http://dx.doi.org/10.1083/jcb.200809127
Descripción
Sumario:Bone morphogenic protein (BMP) signaling is essential for the coordinated assembly of the synapse, but we know little about how BMP signaling is modulated in neurons. Our findings indicate that the Nemo (Nmo) kinase modulates BMP signaling in motor neurons. nmo mutants show synaptic structural defects at the Drosophila melanogaster larval neuromuscular junction, and providing Nmo in motor neurons rescues these defects. We show that Nmo and the BMP transcription factor Mad can be coimmunoprecipitated and find a genetic interaction between nmo and Mad mutants. Moreover, we demonstrate that Nmo is required for normal distribution and accumulation of phosphorylated Mad in motor neurons. Finally, our results indicate that Nmo phosphorylation of Mad at its N terminus, distinct from the BMP phosphorylation site, is required for normal function of Mad. Based on our findings, we propose a model in which phosphorylation of Mad by Nmo ensures normal accumulation and distribution of Mad and thereby fine tunes BMP signaling in motor neurons.