Cargando…
Statistical Power of Model Selection Strategies for Genome-Wide Association Studies
Genome-wide association studies (GWAS) aim to identify genetic variants related to diseases by examining the associations between phenotypes and hundreds of thousands of genotyped markers. Because many genes are potentially involved in common diseases and a large number of markers are analyzed, it i...
Autores principales: | Wu, Zheyang, Zhao, Hongyu |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2009
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2712761/ https://www.ncbi.nlm.nih.gov/pubmed/19649321 http://dx.doi.org/10.1371/journal.pgen.1000582 |
Ejemplares similares
-
Two-stage joint selection method to identify candidate markers from genome-wide association studies
por: Wu, Zheyang, et al.
Publicado: (2009) -
Enrichment of statistical power for genome-wide association studies
por: Li, Meng, et al.
Publicado: (2014) -
Statistical power of transcriptome‐wide association studies
por: He, Ruoyu, et al.
Publicado: (2022) -
Accuracy of genome-wide imputation of untyped markers and impacts on statistical power for association studies
por: Hao, Ke, et al.
Publicado: (2009) -
Polygenic power calculator: Statistical power and polygenic prediction accuracy of genome-wide association studies of complex traits
por: Wu, Tian, et al.
Publicado: (2022)