Cargando…

Structure/Function Analysis of PARP-1 in Oxidative and Nitrosative Stress-Induced Monomeric ADPR Formation

Poly adenosine diphosphate-ribose polymerase-1 (PARP-1) is a multifunctional enzyme that is involved in two major cellular responses to oxidative and nitrosative (O/N) stress: detection and response to DNA damage via formation of protein-bound poly adenosine diphosphate-ribose (PAR), and formation o...

Descripción completa

Detalles Bibliográficos
Autores principales: Buelow, Ben, Uzunparmak, Burak, Paddock, Marcia, Scharenberg, Andrew M.
Formato: Texto
Lenguaje:English
Publicado: Public Library of Science 2009
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2713433/
https://www.ncbi.nlm.nih.gov/pubmed/19641624
http://dx.doi.org/10.1371/journal.pone.0006339
Descripción
Sumario:Poly adenosine diphosphate-ribose polymerase-1 (PARP-1) is a multifunctional enzyme that is involved in two major cellular responses to oxidative and nitrosative (O/N) stress: detection and response to DNA damage via formation of protein-bound poly adenosine diphosphate-ribose (PAR), and formation of the soluble 2(nd) messenger monomeric adenosine diphosphate-ribose (mADPR). Previous studies have delineated specific roles for several of PARP-1′s structural domains in the context of its involvement in a DNA damage response. However, little is known about the relationship between the mechanisms through which PARP-1 participates in DNA damage detection/response and those involved in the generation of monomeric ADPR. To better understand the relationship between these events, we undertook a structure/function analysis of PARP-1 via reconstitution of PARP-1 deficient DT40 cells with PARP-1 variants deficient in catalysis, DNA binding, auto-PARylation, and PARP-1′s BRCT protein interaction domain. Analysis of responses of the respective reconstituted cells to a model O/N stressor indicated that PARP-1 catalytic activity, DNA binding, and auto-PARylation are required for PARP-dependent mADPR formation, but that BRCT-mediated interactions are dispensable. As the BRCT domain is required for PARP-dependent recruitment of XRCC1 to sites of DNA damage, these results suggest that DNA repair and monomeric ADPR 2(nd) messenger generation are parallel mechanisms through which PARP-1 modulates cellular responses to O/N stress.