Cargando…
Efficient shRNA delivery into B and T lymphoma cells using lentiviral vector-mediated transfer
RNA interference is a powerful tool for the functional analysis of proteins by specific gene knockdown. In this study, we devised a rapid and efficient way to screen suitable siRNA sequences and subsequently employ them for specific gene knockdown in usually hard-to-transfect lymphoid cell lines, us...
Autores principales: | , , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Springer-Verlag
2008
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2713496/ https://www.ncbi.nlm.nih.gov/pubmed/19669218 http://dx.doi.org/10.1007/s12308-008-0020-x |
Sumario: | RNA interference is a powerful tool for the functional analysis of proteins by specific gene knockdown. In this study, we devised a rapid and efficient way to screen suitable siRNA sequences and subsequently employ them for specific gene knockdown in usually hard-to-transfect lymphoid cell lines, using a self-inactivating lentiviral vector. Two proteins with different half-lives were chosen, cyclin D1 and STAT3. A specific lacZ reporter fusion assay was used to identify highly effective siRNA sequences. Only siRNA molecules with more than 85% of knockdown efficiency were selected for the generation of lentiviral transfer vectors. Transduction rates of 75–99% were achieved in the lymphoma cell lines Granta 519 (mantle cell lymphoma), Karpas 299, and SUDHL-1 (anaplastic large T cell lymphoma), as demonstrated by green fluorescent protein expression in fluorescence-activated cell sorting analysis. The high level of transduction efficiency allows RNA interference studies to be performed on transduced cells without further manipulation, such as cell sorting or cloning. The LacZ reporter system together with the lentivirus technology is a very important tool in the hematology field, which enables experiments in lymphoid cells that were not possible before. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s12308-008-0020-x) contains supplementary material, which is available to authorized users. |
---|