Cargando…

Gene Remodeling in Type 2 Diabetic Cardiomyopathy and Its Phenotypic Rescue with SERCA2a

BACKGROUND/AIM: Diabetes-associated myocardial dysfunction results in altered gene expression in the heart. We aimed to investigate the changes in gene expression profiles accompanying diabetes-induced cardiomyopathy and its phenotypic rescue by restoration of SERCA2a expression. METHODS/RESULTS: Us...

Descripción completa

Detalles Bibliográficos
Autores principales: Karakikes, Ioannis, Kim, Maengjo, Hadri, Lahouaria, Sakata, Susumu, Sun, Yezhou, Zhang, Weijia, Chemaly, Elie R., Hajjar, Roger J., Lebeche, Djamel
Formato: Texto
Lenguaje:English
Publicado: Public Library of Science 2009
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2714457/
https://www.ncbi.nlm.nih.gov/pubmed/19649297
http://dx.doi.org/10.1371/journal.pone.0006474
Descripción
Sumario:BACKGROUND/AIM: Diabetes-associated myocardial dysfunction results in altered gene expression in the heart. We aimed to investigate the changes in gene expression profiles accompanying diabetes-induced cardiomyopathy and its phenotypic rescue by restoration of SERCA2a expression. METHODS/RESULTS: Using the Otsuka Long-Evans Tokushima Fatty rat model of type 2 diabetes and the Agilent rat microarray chip, we analyzed gene expression by comparing differential transcriptional changes in age-matched control versus diabetic hearts and diabetic hearts that received gene transfer of SERCA2a. Microarray expression profiles of selected genes were verified with real-time qPCR and immunoblotting. Our analysis indicates that diabetic cardiomyopathy is associated with a downregulation of transcripts. Diabetic cardiomyopathic hearts have reduced levels of SERCA2a. SERCA2a gene transfer in these hearts reduced diabetes-associated hypertrophy, and differentially modulated the expression of 76 genes and reversed the transcriptional profile induced by diabetes. In isolated cardiomyocytes in vitro, SERCA2a overexpression significantly modified the expression of a number of transcripts known to be involved in insulin signaling, glucose metabolism and cardiac remodeling. CONCLUSION: This investigation provided insight into the pathophysiology of cardiac remodeling and the potential role of SERCA2a normalization in multiple pathways in diabetic cardiomyopathy.