Cargando…
BRIT1/MCPH1 Links Chromatin Remodeling to DNA Damage Response
To detect and repair damaged DNA, DNA damage response proteins need to overcome the barrier of condensed chromatin to gain access to DNA lesions1. ATP-dependent chromatin remodeling is one of the fundamental mechanisms used by cells to relax chromatin in DNA repair2–3. However, the mechanism mediati...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
2009
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2714531/ https://www.ncbi.nlm.nih.gov/pubmed/19525936 http://dx.doi.org/10.1038/ncb1895 |
Sumario: | To detect and repair damaged DNA, DNA damage response proteins need to overcome the barrier of condensed chromatin to gain access to DNA lesions1. ATP-dependent chromatin remodeling is one of the fundamental mechanisms used by cells to relax chromatin in DNA repair2–3. However, the mechanism mediating their recruitment to DNA lesions remains largely unknown. BRIT1 (also known as MCPH1) is an early DNA damage response protein that is mutated in human primary microcephaly4–8. We report here a previously unknown function of BRIT1 as a regulator of ATP-dependent chromatin remodeling complex SWI/SNF in DNA repair. Upon DNA damage, BRIT1 increases its interaction with SWI/SNF through the ATM/ATR-dependent phosphorylation on the BAF170 subunit. This increase of binding affinity provides a means by which SWI/SNF can be specifically recruited to and maintained at DNA lesions. Loss of BRIT1 causes impaired chromatin relaxation owing to reduced association of SWI/SNF with chromatin. This explains the decreased recruitment of repair proteins to DNA lesions and reduced efficiency of repair in BRIT1-deficient cells, resulting in impaired survival from DNA damage. Our findings, therefore, identify BRIT1 as a key molecule that links chromatin remodeling with DNA damage response in the control of DNA repair, and its dysfunction contributes to human disease. |
---|