Cargando…

Exploring temporal transcription regulation structure of Aspergillus fumigatus in heat shock by state space model

BACKGROUND: The thermotolerance of Aspergillus fumigatus plays a critical role in mammalian and avian infections. Thus, the identification of its adaptation mechanism to higher temperature is very important for an efficient anti-fungal drug development as well as fundamental understanding of its pat...

Descripción completa

Detalles Bibliográficos
Autores principales: Do, Jin Hwan, Yamaguchi, Rui, Miyano, Satoru
Formato: Texto
Lenguaje:English
Publicado: BioMed Central 2009
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2714559/
https://www.ncbi.nlm.nih.gov/pubmed/19586549
http://dx.doi.org/10.1186/1471-2164-10-306
_version_ 1782169688103452672
author Do, Jin Hwan
Yamaguchi, Rui
Miyano, Satoru
author_facet Do, Jin Hwan
Yamaguchi, Rui
Miyano, Satoru
author_sort Do, Jin Hwan
collection PubMed
description BACKGROUND: The thermotolerance of Aspergillus fumigatus plays a critical role in mammalian and avian infections. Thus, the identification of its adaptation mechanism to higher temperature is very important for an efficient anti-fungal drug development as well as fundamental understanding of its pathogenesis. We explored the temporal transcription regulation structure of this pathogenic fungus under heat shock conditions using the time series microarray data reported by Nierman et al. (Nature 2005, 438:1151-1156). RESULTS: The estimated transcription regulation structure of A. fumigatus shows that the heat shock proteins are strongly negatively associated with central metabolic pathway genes such as the tricarboxylic acid cycle (TCA cycle) and carbohydrate metabolism. It was 60 min and 120 min, respectively, after the growth temperature changes from 30°C (corresponding to environments of tropical soil) to 37°C and 48°C (corresponding to temperatures in the human body and compost, respectively) that some of genes in TCA cycle were started to be upregulated. In these points, most of heat shock proteins showed lowest expression level after heat shocks. Among the heat shock proteins, the HSP30 (AFU6G06470), a single integral plasma membrane heat shock protein, presented most active role in transcription regulation structure in both heat shock conditions of 37°C and 48°C. The metabolic genes associated with multiple genes in the gene regulation network showed a tendency to have opposite expression patterns of heat shock proteins. The role of those metabolic genes was second regulator in the coherent feed-forward loop type of regulation structure having heat shock protein as its first regulator. This type of regulation structure might be very advantageous for the thermal adaptation of A. fumigatus under heat shock because a small amount of heat shock proteins can rapidly magnify their regulation effect on target genes. However, the coherent feed-forward loop type of regulation of heat shock proteins with metabolic genes became less frequent with increasing temperature. This might be the reason for dramatic increase in the expression of heat shock proteins and the number of heat shock response genes at heat shock of 48°C. CONCLUSION: We systemically analysed the thermal adaption mechanism of A. fumigatus by state space model with times series microarray data in terms of transcription regulation structure. We suggest for the first time that heat shock proteins might efficiently regulate metabolic genes using the coherent feed-forward loop type of regulation structure. This type of regulation structure would also be efficient for adjustment to the other stresses requiring rapid change of metabolic mode as well as thermal adaptation.
format Text
id pubmed-2714559
institution National Center for Biotechnology Information
language English
publishDate 2009
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-27145592009-07-24 Exploring temporal transcription regulation structure of Aspergillus fumigatus in heat shock by state space model Do, Jin Hwan Yamaguchi, Rui Miyano, Satoru BMC Genomics Research Article BACKGROUND: The thermotolerance of Aspergillus fumigatus plays a critical role in mammalian and avian infections. Thus, the identification of its adaptation mechanism to higher temperature is very important for an efficient anti-fungal drug development as well as fundamental understanding of its pathogenesis. We explored the temporal transcription regulation structure of this pathogenic fungus under heat shock conditions using the time series microarray data reported by Nierman et al. (Nature 2005, 438:1151-1156). RESULTS: The estimated transcription regulation structure of A. fumigatus shows that the heat shock proteins are strongly negatively associated with central metabolic pathway genes such as the tricarboxylic acid cycle (TCA cycle) and carbohydrate metabolism. It was 60 min and 120 min, respectively, after the growth temperature changes from 30°C (corresponding to environments of tropical soil) to 37°C and 48°C (corresponding to temperatures in the human body and compost, respectively) that some of genes in TCA cycle were started to be upregulated. In these points, most of heat shock proteins showed lowest expression level after heat shocks. Among the heat shock proteins, the HSP30 (AFU6G06470), a single integral plasma membrane heat shock protein, presented most active role in transcription regulation structure in both heat shock conditions of 37°C and 48°C. The metabolic genes associated with multiple genes in the gene regulation network showed a tendency to have opposite expression patterns of heat shock proteins. The role of those metabolic genes was second regulator in the coherent feed-forward loop type of regulation structure having heat shock protein as its first regulator. This type of regulation structure might be very advantageous for the thermal adaptation of A. fumigatus under heat shock because a small amount of heat shock proteins can rapidly magnify their regulation effect on target genes. However, the coherent feed-forward loop type of regulation of heat shock proteins with metabolic genes became less frequent with increasing temperature. This might be the reason for dramatic increase in the expression of heat shock proteins and the number of heat shock response genes at heat shock of 48°C. CONCLUSION: We systemically analysed the thermal adaption mechanism of A. fumigatus by state space model with times series microarray data in terms of transcription regulation structure. We suggest for the first time that heat shock proteins might efficiently regulate metabolic genes using the coherent feed-forward loop type of regulation structure. This type of regulation structure would also be efficient for adjustment to the other stresses requiring rapid change of metabolic mode as well as thermal adaptation. BioMed Central 2009-07-08 /pmc/articles/PMC2714559/ /pubmed/19586549 http://dx.doi.org/10.1186/1471-2164-10-306 Text en Copyright © 2009 Do et al; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( (http://creativecommons.org/licenses/by/2.0) ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Article
Do, Jin Hwan
Yamaguchi, Rui
Miyano, Satoru
Exploring temporal transcription regulation structure of Aspergillus fumigatus in heat shock by state space model
title Exploring temporal transcription regulation structure of Aspergillus fumigatus in heat shock by state space model
title_full Exploring temporal transcription regulation structure of Aspergillus fumigatus in heat shock by state space model
title_fullStr Exploring temporal transcription regulation structure of Aspergillus fumigatus in heat shock by state space model
title_full_unstemmed Exploring temporal transcription regulation structure of Aspergillus fumigatus in heat shock by state space model
title_short Exploring temporal transcription regulation structure of Aspergillus fumigatus in heat shock by state space model
title_sort exploring temporal transcription regulation structure of aspergillus fumigatus in heat shock by state space model
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2714559/
https://www.ncbi.nlm.nih.gov/pubmed/19586549
http://dx.doi.org/10.1186/1471-2164-10-306
work_keys_str_mv AT dojinhwan exploringtemporaltranscriptionregulationstructureofaspergillusfumigatusinheatshockbystatespacemodel
AT yamaguchirui exploringtemporaltranscriptionregulationstructureofaspergillusfumigatusinheatshockbystatespacemodel
AT miyanosatoru exploringtemporaltranscriptionregulationstructureofaspergillusfumigatusinheatshockbystatespacemodel