Cargando…
Triangle network motifs predict complexes by complementing high-error interactomes with structural information
BACKGROUND: A lot of high-throughput studies produce protein-protein interaction networks (PPINs) with many errors and missing information. Even for genome-wide approaches, there is often a low overlap between PPINs produced by different studies. Second-level neighbors separated by two protein-prote...
Autores principales: | Andreopoulos, Bill, Winter, Christof, Labudde, Dirk, Schroeder, Michael |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2009
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2714575/ https://www.ncbi.nlm.nih.gov/pubmed/19558694 http://dx.doi.org/10.1186/1471-2105-10-196 |
Ejemplares similares
-
Efficient unfolding pattern recognition in single molecule force spectroscopy data
por: Andreopoulos, Bill, et al.
Publicado: (2011) -
StructureDistiller: Structural relevance scoring identifies the most informative entries of a contact map
por: Bittrich, Sebastian, et al.
Publicado: (2019) -
Counting motifs in the human interactome
por: Tran, Ngoc Hieu, et al.
Publicado: (2013) -
Complementing the Eukaryotic Protein Interactome
por: Pesch, Robert, et al.
Publicado: (2013) -
Xenopus Meiotic Microtubule-Associated Interactome
por: Gache, Vincent, et al.
Publicado: (2010)