Cargando…
Multiple imputation for missing data in epidemiological and clinical research: potential and pitfalls
Most studies have some missing data. Jonathan Sterne and colleagues describe the appropriate use and reporting of the multiple imputation approach to dealing with them
Autores principales: | Sterne, Jonathan A C, White, Ian R, Carlin, John B, Spratt, Michael, Royston, Patrick, Kenward, Michael G, Wood, Angela M, Carpenter, James R |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BMJ Publishing Group Ltd.
2009
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2714692/ https://www.ncbi.nlm.nih.gov/pubmed/19564179 http://dx.doi.org/10.1136/bmj.b2393 |
Ejemplares similares
-
Accounting for missing data in statistical analyses: multiple imputation is not always the answer
por: Hughes, Rachael A, et al.
Publicado: (2019) -
Imputing missing covariate values for the Cox model
por: White, Ian R, et al.
Publicado: (2009) -
Appropriate inclusion of interactions was needed to avoid bias in multiple imputation
por: Tilling, Kate, et al.
Publicado: (2016) -
Multiple imputation for an incomplete covariate that is a ratio
por: Morris, Tim P, et al.
Publicado: (2014) -
Combining fractional polynomial model building with multiple imputation
por: Morris, Tim P., et al.
Publicado: (2015)