Cargando…

Evidence of genome-wide G4 DNA-mediated gene expression in human cancer cells

Guanine-rich DNA of a particular sequence adopts four-stranded structural forms known as G-quadruplex or G4 DNA. Though in vitro formation of G4 DNA is known for several years, in vivo presence of G4 DNA was only recently noted in eukaryote telomeres. Recent bioinformatics analyses showing prevalenc...

Descripción completa

Detalles Bibliográficos
Autores principales: Verma, Anjali, Yadav, Vinod Kumar, Basundra, Richa, Kumar, Akinchan, Chowdhury, Shantanu
Formato: Texto
Lenguaje:English
Publicado: Oxford University Press 2009
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2715224/
https://www.ncbi.nlm.nih.gov/pubmed/19211664
http://dx.doi.org/10.1093/nar/gkn1076
Descripción
Sumario:Guanine-rich DNA of a particular sequence adopts four-stranded structural forms known as G-quadruplex or G4 DNA. Though in vitro formation of G4 DNA is known for several years, in vivo presence of G4 DNA was only recently noted in eukaryote telomeres. Recent bioinformatics analyses showing prevalence of G4 DNA within promoters of human and related species seems to implicate G4 DNA in a genome-wide cis-regulatory role. Herein we demonstrate that G4 DNA may present regulatory sites on a genome-wide scale by showing widespread effect on gene expression in response to the established intracellular G4 DNA-binding ligands. This is particularly relevant to genes that harbor conserved potential G4 DNA (PG4 DNA) forming sequence across human, mouse and rat promoters of orthologous genes. Genes with conserved PG4 DNA in promoters show co-regulated expression in 79 human and 61 mouse normal tissues (z-score > 3.5; P < 0.0001). Conservation of G4 DNA across related species also emphasizes the biological importance of G4 DNA and its role in transcriptional regulation of genes; shedding light on a relatively novel mechanism of regulation of gene expression in eukaryotes.