Cargando…

P-Type ATPase TAT-2 Negatively Regulates Monomethyl Branched-Chain Fatty Acid Mediated Function in Post-Embryonic Growth and Development in C. elegans

Monomethyl branched-chain fatty acids (mmBCFAs) are essential for Caenorhabditis elegans growth and development. To identify factors acting downstream of mmBCFAs for their function in growth regulation, we conducted a genetic screen for suppressors of the L1 arrest that occurs in animals depleted of...

Descripción completa

Detalles Bibliográficos
Autores principales: Seamen, Emylie, Blanchette, Jennifer M., Han, Min
Formato: Texto
Lenguaje:English
Publicado: Public Library of Science 2009
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2716530/
https://www.ncbi.nlm.nih.gov/pubmed/19662161
http://dx.doi.org/10.1371/journal.pgen.1000589
Descripción
Sumario:Monomethyl branched-chain fatty acids (mmBCFAs) are essential for Caenorhabditis elegans growth and development. To identify factors acting downstream of mmBCFAs for their function in growth regulation, we conducted a genetic screen for suppressors of the L1 arrest that occurs in animals depleted of the 17-carbon mmBCFA C17ISO. Three of the suppressor mutations defined an unexpected player, the P-type ATPase TAT-2, which belongs to the flippase family of proteins that are implicated in mediating phospholipid bilayer asymmetry. We provide evidence that TAT-2, but not other TAT genes, has a specific role in antagonizing the regulatory activity of mmBCFAs in intestinal cells. Interestingly, we found that mutations in tat-2 also suppress the lethality caused by inhibition of the first step in sphingolipid biosynthesis. We further showed that the fatty acid side-chains of glycosylceramides contain 20%–30% mmBCFAs and that this fraction is greatly diminished in the absence of mmBCFA biosynthesis. These results suggest a model in which a C17ISO-containing sphingolipid may mediate the regulatory functions of mmBCFAs and is negatively regulated by TAT-2 in intestinal cells. This work indicates a novel connection between a P-type ATPase and the critical regulatory function of a specific fatty acid.