Cargando…
A joint finite mixture model for clustering genes from independent Gaussian and beta distributed data
BACKGROUND: Cluster analysis has become a standard computational method for gene function discovery as well as for more general explanatory data analysis. A number of different approaches have been proposed for that purpose, out of which different mixture models provide a principled probabilistic fr...
Autores principales: | Dai, Xiaofeng, Erkkilä, Timo, Yli-Harja, Olli, Lähdesmäki, Harri |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2009
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2717092/ https://www.ncbi.nlm.nih.gov/pubmed/19480678 http://dx.doi.org/10.1186/1471-2105-10-165 |
Ejemplares similares
-
In silico microdissection of microarray data from heterogeneous cell populations
por: Lähdesmäki, Harri, et al.
Publicado: (2005) -
Robust regression for periodicity detection in non-uniformly sampled time-course gene expression data
por: Ahdesmäki, Miika, et al.
Publicado: (2007) -
Robust detection of periodic time series measured from biological systems
por: Ahdesmäki, Miika, et al.
Publicado: (2005) -
A protein–protein interaction guided method for competitive transcription factor binding improves target predictions
por: Laurila, Kirsti, et al.
Publicado: (2009) -
Model-based clustering based on sparse
finite Gaussian mixtures
por: Malsiner-Walli, Gertraud, et al.
Publicado: (2014)