Cargando…
Dissection of Symbiosis and Organ Development by Integrated Transcriptome Analysis of Lotus japonicus Mutant and Wild-Type Plants
Genetic analyses of plant symbiotic mutants has led to the identification of key genes involved in Rhizobium-legume communication as well as in development and function of nitrogen fixing root nodules. However, the impact of these genes in coordinating the transcriptional programs of nodule developm...
Autores principales: | , , , , , , , , , , , , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2009
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2717213/ https://www.ncbi.nlm.nih.gov/pubmed/19662091 http://dx.doi.org/10.1371/journal.pone.0006556 |
_version_ | 1782169880716378112 |
---|---|
author | Høgslund, Niels Radutoiu, Simona Krusell, Lene Voroshilova, Vera Hannah, Matthew A. Goffard, Nicolas Sanchez, Diego H. Lippold, Felix Ott, Thomas Sato, Shusei Tabata, Satoshi Liboriussen, Poul Lohmann, Gitte V. Schauser, Leif Weiller, Georg F. Udvardi, Michael K. Stougaard, Jens |
author_facet | Høgslund, Niels Radutoiu, Simona Krusell, Lene Voroshilova, Vera Hannah, Matthew A. Goffard, Nicolas Sanchez, Diego H. Lippold, Felix Ott, Thomas Sato, Shusei Tabata, Satoshi Liboriussen, Poul Lohmann, Gitte V. Schauser, Leif Weiller, Georg F. Udvardi, Michael K. Stougaard, Jens |
author_sort | Høgslund, Niels |
collection | PubMed |
description | Genetic analyses of plant symbiotic mutants has led to the identification of key genes involved in Rhizobium-legume communication as well as in development and function of nitrogen fixing root nodules. However, the impact of these genes in coordinating the transcriptional programs of nodule development has only been studied in limited and isolated studies. Here, we present an integrated genome-wide analysis of transcriptome landscapes in Lotus japonicus wild-type and symbiotic mutant plants. Encompassing five different organs, five stages of the sequentially developed determinate Lotus root nodules, and eight mutants impaired at different stages of the symbiotic interaction, our data set integrates an unprecedented combination of organ- or tissue-specific profiles with mutant transcript profiles. In total, 38 different conditions sampled under the same well-defined growth regimes were included. This comprehensive analysis unravelled new and unexpected patterns of transcriptional regulation during symbiosis and organ development. Contrary to expectations, none of the previously characterized nodulins were among the 37 genes specifically expressed in nodules. Another surprise was the extensive transcriptional response in whole root compared to the susceptible root zone where the cellular response is most pronounced. A large number of transcripts predicted to encode transcriptional regulators, receptors and proteins involved in signal transduction, as well as many genes with unknown function, were found to be regulated during nodule organogenesis and rhizobial infection. Combining wild type and mutant profiles of these transcripts demonstrates the activation of a complex genetic program that delineates symbiotic nitrogen fixation. The complete data set was organized into an indexed expression directory that is accessible from a resource database, and here we present selected examples of biological questions that can be addressed with this comprehensive and powerful gene expression data set. |
format | Text |
id | pubmed-2717213 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2009 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-27172132009-08-07 Dissection of Symbiosis and Organ Development by Integrated Transcriptome Analysis of Lotus japonicus Mutant and Wild-Type Plants Høgslund, Niels Radutoiu, Simona Krusell, Lene Voroshilova, Vera Hannah, Matthew A. Goffard, Nicolas Sanchez, Diego H. Lippold, Felix Ott, Thomas Sato, Shusei Tabata, Satoshi Liboriussen, Poul Lohmann, Gitte V. Schauser, Leif Weiller, Georg F. Udvardi, Michael K. Stougaard, Jens PLoS One Research Article Genetic analyses of plant symbiotic mutants has led to the identification of key genes involved in Rhizobium-legume communication as well as in development and function of nitrogen fixing root nodules. However, the impact of these genes in coordinating the transcriptional programs of nodule development has only been studied in limited and isolated studies. Here, we present an integrated genome-wide analysis of transcriptome landscapes in Lotus japonicus wild-type and symbiotic mutant plants. Encompassing five different organs, five stages of the sequentially developed determinate Lotus root nodules, and eight mutants impaired at different stages of the symbiotic interaction, our data set integrates an unprecedented combination of organ- or tissue-specific profiles with mutant transcript profiles. In total, 38 different conditions sampled under the same well-defined growth regimes were included. This comprehensive analysis unravelled new and unexpected patterns of transcriptional regulation during symbiosis and organ development. Contrary to expectations, none of the previously characterized nodulins were among the 37 genes specifically expressed in nodules. Another surprise was the extensive transcriptional response in whole root compared to the susceptible root zone where the cellular response is most pronounced. A large number of transcripts predicted to encode transcriptional regulators, receptors and proteins involved in signal transduction, as well as many genes with unknown function, were found to be regulated during nodule organogenesis and rhizobial infection. Combining wild type and mutant profiles of these transcripts demonstrates the activation of a complex genetic program that delineates symbiotic nitrogen fixation. The complete data set was organized into an indexed expression directory that is accessible from a resource database, and here we present selected examples of biological questions that can be addressed with this comprehensive and powerful gene expression data set. Public Library of Science 2009-08-07 /pmc/articles/PMC2717213/ /pubmed/19662091 http://dx.doi.org/10.1371/journal.pone.0006556 Text en Høgslund et al. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Høgslund, Niels Radutoiu, Simona Krusell, Lene Voroshilova, Vera Hannah, Matthew A. Goffard, Nicolas Sanchez, Diego H. Lippold, Felix Ott, Thomas Sato, Shusei Tabata, Satoshi Liboriussen, Poul Lohmann, Gitte V. Schauser, Leif Weiller, Georg F. Udvardi, Michael K. Stougaard, Jens Dissection of Symbiosis and Organ Development by Integrated Transcriptome Analysis of Lotus japonicus Mutant and Wild-Type Plants |
title | Dissection of Symbiosis and Organ Development by Integrated Transcriptome Analysis of Lotus japonicus Mutant and Wild-Type Plants |
title_full | Dissection of Symbiosis and Organ Development by Integrated Transcriptome Analysis of Lotus japonicus Mutant and Wild-Type Plants |
title_fullStr | Dissection of Symbiosis and Organ Development by Integrated Transcriptome Analysis of Lotus japonicus Mutant and Wild-Type Plants |
title_full_unstemmed | Dissection of Symbiosis and Organ Development by Integrated Transcriptome Analysis of Lotus japonicus Mutant and Wild-Type Plants |
title_short | Dissection of Symbiosis and Organ Development by Integrated Transcriptome Analysis of Lotus japonicus Mutant and Wild-Type Plants |
title_sort | dissection of symbiosis and organ development by integrated transcriptome analysis of lotus japonicus mutant and wild-type plants |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2717213/ https://www.ncbi.nlm.nih.gov/pubmed/19662091 http://dx.doi.org/10.1371/journal.pone.0006556 |
work_keys_str_mv | AT høgslundniels dissectionofsymbiosisandorgandevelopmentbyintegratedtranscriptomeanalysisoflotusjaponicusmutantandwildtypeplants AT radutoiusimona dissectionofsymbiosisandorgandevelopmentbyintegratedtranscriptomeanalysisoflotusjaponicusmutantandwildtypeplants AT kruselllene dissectionofsymbiosisandorgandevelopmentbyintegratedtranscriptomeanalysisoflotusjaponicusmutantandwildtypeplants AT voroshilovavera dissectionofsymbiosisandorgandevelopmentbyintegratedtranscriptomeanalysisoflotusjaponicusmutantandwildtypeplants AT hannahmatthewa dissectionofsymbiosisandorgandevelopmentbyintegratedtranscriptomeanalysisoflotusjaponicusmutantandwildtypeplants AT goffardnicolas dissectionofsymbiosisandorgandevelopmentbyintegratedtranscriptomeanalysisoflotusjaponicusmutantandwildtypeplants AT sanchezdiegoh dissectionofsymbiosisandorgandevelopmentbyintegratedtranscriptomeanalysisoflotusjaponicusmutantandwildtypeplants AT lippoldfelix dissectionofsymbiosisandorgandevelopmentbyintegratedtranscriptomeanalysisoflotusjaponicusmutantandwildtypeplants AT ottthomas dissectionofsymbiosisandorgandevelopmentbyintegratedtranscriptomeanalysisoflotusjaponicusmutantandwildtypeplants AT satoshusei dissectionofsymbiosisandorgandevelopmentbyintegratedtranscriptomeanalysisoflotusjaponicusmutantandwildtypeplants AT tabatasatoshi dissectionofsymbiosisandorgandevelopmentbyintegratedtranscriptomeanalysisoflotusjaponicusmutantandwildtypeplants AT liboriussenpoul dissectionofsymbiosisandorgandevelopmentbyintegratedtranscriptomeanalysisoflotusjaponicusmutantandwildtypeplants AT lohmanngittev dissectionofsymbiosisandorgandevelopmentbyintegratedtranscriptomeanalysisoflotusjaponicusmutantandwildtypeplants AT schauserleif dissectionofsymbiosisandorgandevelopmentbyintegratedtranscriptomeanalysisoflotusjaponicusmutantandwildtypeplants AT weillergeorgf dissectionofsymbiosisandorgandevelopmentbyintegratedtranscriptomeanalysisoflotusjaponicusmutantandwildtypeplants AT udvardimichaelk dissectionofsymbiosisandorgandevelopmentbyintegratedtranscriptomeanalysisoflotusjaponicusmutantandwildtypeplants AT stougaardjens dissectionofsymbiosisandorgandevelopmentbyintegratedtranscriptomeanalysisoflotusjaponicusmutantandwildtypeplants |