Cargando…
Unsupervised assessment of microarray data quality using a Gaussian mixture model
BACKGROUND: Quality assessment of microarray data is an important and often challenging aspect of gene expression analysis. This task frequently involves the examination of a variety of summary statistics and diagnostic plots. The interpretation of these diagnostics is often subjective, and generall...
Autores principales: | Howard, Brian E, Sick, Beate, Heber, Steffen |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2009
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2717951/ https://www.ncbi.nlm.nih.gov/pubmed/19545436 http://dx.doi.org/10.1186/1471-2105-10-191 |
Ejemplares similares
-
GMAIR: Unsupervised Object Detection Based on Spatial Attention and Gaussian Mixture Model
por: Zhu, Weijin, et al.
Publicado: (2022) -
Variational Information Bottleneck for Unsupervised Clustering: Deep Gaussian Mixture Embedding
por: Uğur, Yiğit, et al.
Publicado: (2020) -
Adaptive filtering of microarray gene expression data based on Gaussian mixture decomposition
por: Marczyk, Michal, et al.
Publicado: (2013) -
Fitting Gaussian mixture models on incomplete data
por: McCaw, Zachary R., et al.
Publicado: (2022) -
RACE: Remote Analysis Computation for gene Expression data
por: Psarros, Michael, et al.
Publicado: (2005)